搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒的冲击熔化原位X射线衍射测量研究

华颖鑫 陈小辉 李俊 郝龙 孙毅 王玉峰 耿华运

引用本文:
Citation:

钒的冲击熔化原位X射线衍射测量研究

华颖鑫, 陈小辉, 李俊, 郝龙, 孙毅, 王玉峰, 耿华运

In situ X-ray diffraction measurement of shock melting in vanadium

Hua Ying-Xin, Chen Xiao-Hui, Li Jun, Hao Long, Sun Yi, Wang Yu-Feng, Geng Hua-Yun
PDF
HTML
导出引用
  • 高压结构与相变研究对理解物质在极端压缩条件下的性质变化和动力学响应行为具有重要的科学价值, 然而部分过渡金属的动/静高压熔化线差异一直是多年来悬而未解的科学难题. 其中动、静高压固-液相界幅值差异最大的是第五副族金属, 以钒最为反常, 至今仍缺乏自洽的物理认识和理解. 本文采用高能脉冲激光驱动的瞬态X射线衍射诊断技术, 对冲击压缩下钒的熔化特性进行了研究, 首次获取了冲击压缩下钒在200 GPa范围内的晶体结构响应随压力变化的衍射图谱. 研究发现, 冲击压力为155 GPa时, 钒仍保持固态bcc相; 至约190 GPa时转变为液态. 这一结果否定了早期确定的静压熔化线, 与最新的冲击熔化线及高温高压相图符合, 为钒高压熔化线的统一认识提供了新的微观实验证据. 本工作亦可推广至其他材料熔化特性的研究工作中.
    The solid-liquid phase transition under shock wave loading in materials is called shock melting. Shock melting is important not only in fields like high pressure EOS or material dynamic response, but also in applications like device protection in modern industry and national defense construction. The obtaining of precise melting curve is more than understanding the high pressure melting behavior, and it can provide the reliable evidence for the theoretical model of melting mechanism. So the solid-liquid phase transition under extreme conditions is a research hotspot, and a lot of researches have been carried out. But, the enormous discrepancy between the melting curve of dynamic loading and hydrostatic loading in transition metals, especially, the vanadium has been unclear for decades. The difference in melting temperature under 200 GPa between dynamic loading and hydrostatic loadirng is as large as twice (about 4000 K). Recently, Errandonea and Zhang’s experiments present a new insight into this discrepancy, indicating that the new shock melting curve is consistent with the extrapolated melting curve contained by LH-DAC. But all the dynamic loading experimental data are measured by macroscopic quantities; they can determine the occurrence of the phase transition, but cannot provide the microscopic structure of the material under extreme conditions. So, as the technic of in situ X-ray diffraction has developed well in recent years, we use the high power laser driving technic combining with in situ X-ray diffraction measurement to explore the structure of vanadium near the melting line. We measure the micro structure of vanadium at up to 200 GPa in shock experiment for the first time. We find that the bcc phase transition is not observed at around 60 GPa, which is different from previous experiments in DAC or gas gun loading experiments, but consistent with Chen’s leaser driving experiment. The result confirms that when the impact pressure is 155 GPa, vanadium still remains solid BCC phase. It becomes liquid at about 190 GPa. In contract to Zhang’s results, the DXRD melting point is consistent with the new melting line. This work provides the evidence of the consistency of shock and hydrostatic melting curve, confirming the phase boundary of vanadium under 200 GPa. This work has important scientific significance in understanding the pressure melting behavior of transition metals. The method in this work can be applied to the research of melting properties of other materials.
      通信作者: 李俊, lijun102@caep.cn
    • 基金项目: 国家自然科学基金委员会-中国工程物理研究院NSAF联合基金(批准号: U1730248)、国家自然科学基金(批准号: 11872056)和国防科工局稳定支持项目(批准号: JCKYS2020212014)资助的课题
      Corresponding author: Li Jun, lijun102@caep.cn
    • Funds: Project supported by NSAF (Grant No. U1730248), the National Natural Science Foundation of China(Grant No. 11872056), and the National Key Laboratory of Shock Wave and Detonation Physics (Grant No. JCKYS2020212014)
    [1]

    Errandonea D, Schwager B, Ditz R, Gessmann C, Boehler R, Ross M 2001 Phys. Rev. B 63 132104Google Scholar

    [2]

    Dai C D, Jin X G, Zhou X M, Liu J J, Hu J B 2001 J. Phys. D:Appl. Phys. 34 3064Google Scholar

    [3]

    Yoo C S, Holmes N C, Ross M, Webb D J, Pike C 1993 Phys. Rev. Lett. 70 3931Google Scholar

    [4]

    Dai C D, Hu J B, Tan H 2009 J. Appl. Phys. 106 043519Google Scholar

    [5]

    Dewaele A, Mezouar M, Guignot N, Loubeyre P 2010 Phys. Rev. Lett. 104 255701Google Scholar

    [6]

    Hixson R S, Boness D A, Shaner J W, Moriarty J 1989 Phys. Rev. Lett. 62 637Google Scholar

    [7]

    Errandonea D 2005 Physica B: Condensed Matter 357 356Google Scholar

    [8]

    Ding Y, Ahuja R, Shu J, Chow P, Luo W, Mao H K 2007 Phys. Rev. Lett. 98 085502Google Scholar

    [9]

    Qiu S L, Marcus P M 2008 J. Phys. Condens. Matter. 20 275218Google Scholar

    [10]

    Jenei Z, Liermann H P, Cynn H, Klepeis J H P, Baer B J, Evans W J 2011 Phys. Rev. B 83 054101

    [11]

    俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202Google Scholar

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202Google Scholar

    [12]

    Foster J M, Comley A J, Case G S, Avraam P, Rothman S D, Higginbotham A, Floyd E K R, Gumbrell E T, Luis J J D, McGonegle D, Park N T, Peacock L J, Poulter C P, Suggit M J, Wark J S 2017 J. Appl. Phys. 122 025117Google Scholar

    [13]

    Wang Y X, Wu Q, Chen X R, Geng H Y 2016 Sci. Rep. 6 32419Google Scholar

    [14]

    Akahama Y, Kawaguchi S, Hirao N, Ohishi Y 2021 J. Appl. Phys. 129 135902Google Scholar

    [15]

    Wang Y X, Geng H Y, Wu Q, Chen X R, Sun Y 2017 J. Appl. Phys. 122 235903Google Scholar

    [16]

    Wang Y X, Geng H Y, Wu Q, Chen X R 2020 J. Chem. Phys. 152 024118Google Scholar

    [17]

    Errandonea D, MacLeod S G, Burakovsky L, Santamaria-Perez D, Proctor J E, Cynn H, Mezouar M 2019 Phys. Rev. B 100 094111Google Scholar

    [18]

    Li J, Wu Q, Li J B, Xue T, Tan Y, Zhou X M, Zhang Y J, Xiong Z W, Gao Z P, Sekine T 2020 Geophys. Res. Lett. 47 e2020GL087758

    [19]

    Zhang Y J, Tan Y, Geng H Y, Salke N P, Gao Z P, Li J, Sekine T, Wang Q M, Greenberg E, Prakapenka V B, Lin J F 2020 Phys. Rev. B 102 214104

    [20]

    Johnson Q, Mitchell A C 1972 Phys. Rev. Lett. 29 1369Google Scholar

    [21]

    Gupta Y M, Zimmerman K A, Rigg P A, Zaretsky E B, Savage D M, Bellamy P M 1999 Rev. Sci. Instrum. 70 4008Google Scholar

    [22]

    Kalantar D H, Chandler E A, Colvin J D, Lee R, Remington B A, Weber S V, Wiley L G, Hauer A, Wark J S, Loveridge A, Failor B H, Meyers M A, Ravichandran G 1999 Rev. Sci. Instrum. 70 629Google Scholar

    [23]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davies H M, Eggert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stolken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502Google Scholar

    [24]

    Coppari F, Smith R F, Eggert J H, Wang J, Rygg J R, Lazicki A, Hawreliak J A, Collins G W, Duffy T S 2013 Nat. Geosci. 6 926Google Scholar

    [25]

    Gorman M G, Briggs R, McBride E E, Higginbotham A, Arnold B, Eggert J H, Fratanduono D E, Galtier E, Lazicki A E, Lee H J, Liermann H P, Nagler B, Rothkirch A, Smith R F, Swift D C, Collins G W, Wark J S, McMahon M I 2015 Phys. Rev. Lett. 115 095701Google Scholar

    [26]

    Sharma S M, Turneaure S J, Winey J M, Li Y, Rigg P, Schuman A, Sinclair N, Toyoda Y, Wang X, Weir N, Zhang J, Gupta Y M 2019 Phys. Rev. Lett. 123 045702Google Scholar

    [27]

    李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃 2017 物理学报 66 136101Google Scholar

    Li J, Chen X H, Wu Q, Luo B Q, Li M, Yang Q G, Tao T J, Jin K, Geng H Y, Tan Y, Xue T 2017 Acta Phys. Sin. 66 136101Google Scholar

    [28]

    陈小辉, 谭伯仲, 薛桃, 马云灿, 靳赛, 李志军, 辛越峰, 李晓亚, 李俊 2020 物理学报 69 246201Google Scholar

    Chen X H, Tan B Z, Xue T, Ma Y C, Jin S, Li Z J, Xin Y F, Li X Y, Li J 2020 Acta Phys. Sin. 69 246201Google Scholar

    [29]

    陶天炯, 翁继东, 王翔 2011 光电工程 38 39

    Tao T J, Weng J D, Wang X 2011 Opto-Electron. Engineer. 38 39

    [30]

    Zhang T, Wang S, Song H, Duan S, Liu H 2019 J. Appl. Phys. 126 205901Google Scholar

  • 图 1  基于高功率激光驱动的多晶材料瞬态X射线衍射诊断技术实验靶装置结构及测试系统布局示意图

    Fig. 1.  The sketch of experimental setup for in situ X-ray diffraction of shock compressed polycrystalline.

    图 2  平面晶体谱仪测得激光驱动钒箔产生的X射线源能谱

    Fig. 2.  The X-ray spectrum of vanadium foil driven by laser were measured by crystal spectrometer.

    图 3  无冲击载荷(静态样品)下多晶钒X射线衍射图谱 (a)数值模拟计算结果; (b)IP板实测图谱; (c)转换至2θ-φ空间的衍射图像; (d)沿φ方向积分的X射线衍射谱线, 图中红色虚线为各衍射峰的理论位置

    Fig. 3.  The X-ray diffraction image of un-shocked crystalline vanadium: (a) the result of numerical simulation; (b) the original image recorded by image plates; (c) X-ray data projected into 2θ-φspace; (d) the one-dimensional X-ray diffraction pattern, the red dashed lines represent the theoretical position of diffraction peaks.

    图 4  冲击压力61.7 GPa下获得的钒原位衍射图谱 (a) IP板实测图谱, 新增衍射峰见红色箭头所示; (b)转换至2θ-φ空间的衍射图像; (c)沿φ方向积分后的X射线衍射谱线.

    Fig. 4.  The in situ X-ray diffraction images under 61.7 GPa: (a) the original image recorded by image plates, the new diffraction peak is indicated by the arrow; (b) X-ray data projected into 2θ-φ space; (c) the one-dimensional X-ray diffraction pattern.

    图 5  原位X射线衍射给出的密度与自由面速度波剖面测量结果的比较 (a)自由面粒子速度剖面, 结合钒的已知Hugoniot关系计算给出冲击压力、密度; (b)DXRD衍射数据与压力-密度(P-ρ/ρ0)Hugoniot曲线的比较

    Fig. 5.  (a) The particle velocity of free surface; (b) the pressure-density relation calculated by DXRD data compare to vanadium Hugoniot curve.

    图 6  更高冲击压力下钒的原位衍射图谱 (a) 187.3 GPa; (b) 197.6 GPa; (c) 253.7 GPa

    Fig. 6.  The in situ X-ray diffraction pattern under higher pressure: (a) 187.3 GPa; (b) 197.6 GPa; (c) 253.7 GPa.

    图 7  冲击压缩下(155 GPa)单晶钒的衍射数据 (a)实测衍射图谱; (b)冲击压缩前后(002)晶面谱线

    Fig. 7.  The X-ray diffraction data of shock compressed single crystal vanadium: (a) The diffraction image; (b) the diffraction data of shocked (002) and unshocked (002).

    图 8  钒的DXRD实验数据与早期动、静高压熔化线的比较[1,2]

    Fig. 8.  The DXRD data of vanadium compared to previous shock/DAC melting line[1,2].

    图 9  钒动-静高压熔化线的统一相图[1,2,17,19,30]

    Fig. 9.  The phase diagram of vanadium with melting curve at high pressure[1,2,17,19,30].

  • [1]

    Errandonea D, Schwager B, Ditz R, Gessmann C, Boehler R, Ross M 2001 Phys. Rev. B 63 132104Google Scholar

    [2]

    Dai C D, Jin X G, Zhou X M, Liu J J, Hu J B 2001 J. Phys. D:Appl. Phys. 34 3064Google Scholar

    [3]

    Yoo C S, Holmes N C, Ross M, Webb D J, Pike C 1993 Phys. Rev. Lett. 70 3931Google Scholar

    [4]

    Dai C D, Hu J B, Tan H 2009 J. Appl. Phys. 106 043519Google Scholar

    [5]

    Dewaele A, Mezouar M, Guignot N, Loubeyre P 2010 Phys. Rev. Lett. 104 255701Google Scholar

    [6]

    Hixson R S, Boness D A, Shaner J W, Moriarty J 1989 Phys. Rev. Lett. 62 637Google Scholar

    [7]

    Errandonea D 2005 Physica B: Condensed Matter 357 356Google Scholar

    [8]

    Ding Y, Ahuja R, Shu J, Chow P, Luo W, Mao H K 2007 Phys. Rev. Lett. 98 085502Google Scholar

    [9]

    Qiu S L, Marcus P M 2008 J. Phys. Condens. Matter. 20 275218Google Scholar

    [10]

    Jenei Z, Liermann H P, Cynn H, Klepeis J H P, Baer B J, Evans W J 2011 Phys. Rev. B 83 054101

    [11]

    俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202Google Scholar

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202Google Scholar

    [12]

    Foster J M, Comley A J, Case G S, Avraam P, Rothman S D, Higginbotham A, Floyd E K R, Gumbrell E T, Luis J J D, McGonegle D, Park N T, Peacock L J, Poulter C P, Suggit M J, Wark J S 2017 J. Appl. Phys. 122 025117Google Scholar

    [13]

    Wang Y X, Wu Q, Chen X R, Geng H Y 2016 Sci. Rep. 6 32419Google Scholar

    [14]

    Akahama Y, Kawaguchi S, Hirao N, Ohishi Y 2021 J. Appl. Phys. 129 135902Google Scholar

    [15]

    Wang Y X, Geng H Y, Wu Q, Chen X R, Sun Y 2017 J. Appl. Phys. 122 235903Google Scholar

    [16]

    Wang Y X, Geng H Y, Wu Q, Chen X R 2020 J. Chem. Phys. 152 024118Google Scholar

    [17]

    Errandonea D, MacLeod S G, Burakovsky L, Santamaria-Perez D, Proctor J E, Cynn H, Mezouar M 2019 Phys. Rev. B 100 094111Google Scholar

    [18]

    Li J, Wu Q, Li J B, Xue T, Tan Y, Zhou X M, Zhang Y J, Xiong Z W, Gao Z P, Sekine T 2020 Geophys. Res. Lett. 47 e2020GL087758

    [19]

    Zhang Y J, Tan Y, Geng H Y, Salke N P, Gao Z P, Li J, Sekine T, Wang Q M, Greenberg E, Prakapenka V B, Lin J F 2020 Phys. Rev. B 102 214104

    [20]

    Johnson Q, Mitchell A C 1972 Phys. Rev. Lett. 29 1369Google Scholar

    [21]

    Gupta Y M, Zimmerman K A, Rigg P A, Zaretsky E B, Savage D M, Bellamy P M 1999 Rev. Sci. Instrum. 70 4008Google Scholar

    [22]

    Kalantar D H, Chandler E A, Colvin J D, Lee R, Remington B A, Weber S V, Wiley L G, Hauer A, Wark J S, Loveridge A, Failor B H, Meyers M A, Ravichandran G 1999 Rev. Sci. Instrum. 70 629Google Scholar

    [23]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davies H M, Eggert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stolken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502Google Scholar

    [24]

    Coppari F, Smith R F, Eggert J H, Wang J, Rygg J R, Lazicki A, Hawreliak J A, Collins G W, Duffy T S 2013 Nat. Geosci. 6 926Google Scholar

    [25]

    Gorman M G, Briggs R, McBride E E, Higginbotham A, Arnold B, Eggert J H, Fratanduono D E, Galtier E, Lazicki A E, Lee H J, Liermann H P, Nagler B, Rothkirch A, Smith R F, Swift D C, Collins G W, Wark J S, McMahon M I 2015 Phys. Rev. Lett. 115 095701Google Scholar

    [26]

    Sharma S M, Turneaure S J, Winey J M, Li Y, Rigg P, Schuman A, Sinclair N, Toyoda Y, Wang X, Weir N, Zhang J, Gupta Y M 2019 Phys. Rev. Lett. 123 045702Google Scholar

    [27]

    李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃 2017 物理学报 66 136101Google Scholar

    Li J, Chen X H, Wu Q, Luo B Q, Li M, Yang Q G, Tao T J, Jin K, Geng H Y, Tan Y, Xue T 2017 Acta Phys. Sin. 66 136101Google Scholar

    [28]

    陈小辉, 谭伯仲, 薛桃, 马云灿, 靳赛, 李志军, 辛越峰, 李晓亚, 李俊 2020 物理学报 69 246201Google Scholar

    Chen X H, Tan B Z, Xue T, Ma Y C, Jin S, Li Z J, Xin Y F, Li X Y, Li J 2020 Acta Phys. Sin. 69 246201Google Scholar

    [29]

    陶天炯, 翁继东, 王翔 2011 光电工程 38 39

    Tao T J, Weng J D, Wang X 2011 Opto-Electron. Engineer. 38 39

    [30]

    Zhang T, Wang S, Song H, Duan S, Liu H 2019 J. Appl. Phys. 126 205901Google Scholar

  • [1] 赵卫, 付士杰, 盛泉, 薛凯, 史伟, 姚建铨. 辅助光对高功率掺镱光纤激光放大器受激拉曼散射效应的抑制作用. 物理学报, 2024, 73(20): 204201. doi: 10.7498/aps.73.20240895
    [2] 谢静, 王利, 刘崇, 张艳丽, 刘强, 汪涛, 柴志豪, 夏志强, 杨琳, 张攀政, 朱宝强. 神光II升级激光装置基频输出能力提升. 物理学报, 2023, 72(19): 194202. doi: 10.7498/aps.72.20230643
    [3] 蒋元祺. 难熔金属钒熔化行为的局域原子结构模拟与分析. 物理学报, 2020, 69(20): 203601. doi: 10.7498/aps.69.20200185
    [4] 陈小辉, 谭伯仲, 薛桃, 马云灿, 靳赛, 李志军, 辛越峰, 李晓亚, 李俊. 高压高应变率加载下多晶相变的原位X射线衍射. 物理学报, 2020, 69(24): 246201. doi: 10.7498/aps.69.20200929
    [5] 李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃. 基于原位X射线衍射技术的动态晶格响应测量方法研究. 物理学报, 2017, 66(13): 136101. doi: 10.7498/aps.66.136101
    [6] 周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青. 近玻尔速度氙离子激发钒的K壳层X射线. 物理学报, 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [7] 崔丽娟, 高进, 杜玉峰, 张高伟, 张磊, 龙毅, 杨善武, 詹倩, 万发荣. 氢离子辐照纯钒中形成的位错环. 物理学报, 2016, 65(6): 066102. doi: 10.7498/aps.65.066102
    [8] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭 华. 钒的高压声速测量. 物理学报, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [9] 王玲, 王河锦, 李婷. 锐钛矿金红石的高温原位X射线衍射研究. 物理学报, 2013, 62(14): 146402. doi: 10.7498/aps.62.146402
    [10] 张国文, 卢兴强, 曹华保, 尹宪华, 吕凤年, 张臻, 李菁辉, 王仁贵, 马伟新, 朱俭. 高功率激光光束经颗粒污染后的近场衍射效应. 物理学报, 2012, 61(2): 024201. doi: 10.7498/aps.61.024201
    [11] 蔡朝斌, 赵建林, 彭涛, 李东. 高功率激光系统中随机分布缺陷产生的"热像". 物理学报, 2011, 60(11): 114209. doi: 10.7498/aps.60.114209
    [12] 王友文, 邓剑钦, 文双春, 唐志祥, 傅喜泉, 范滇元. 宽频带光束非线性热像效应的实验研究. 物理学报, 2009, 58(3): 1738-1744. doi: 10.7498/aps.58.1738
    [13] 冯则胡, 傅喜泉, 章礼富, 徐慧文, 文双春. 超短脉冲激光空间调制下小尺度自聚焦的实验研究. 物理学报, 2008, 57(4): 2253-2259. doi: 10.7498/aps.57.2253
    [14] 王友文, 胡勇华, 文双春, 游开明, 傅喜泉. 高斯光束非线性“热像”效应研究. 物理学报, 2007, 56(10): 5855-5861. doi: 10.7498/aps.56.5855
    [15] 谢良平, 赵建林, 粟敬钦, 景 峰, 王文义, 彭翰生. 位相调制产生“热像”效应理论研究. 物理学报, 2004, 53(7): 2175-2179. doi: 10.7498/aps.53.2175
    [16] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响. 物理学报, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [17] 骆建, 殷宏, 陶琨. 连续过渡型多晶物相深度分布的X射线衍射测试方法. 物理学报, 1995, 44(11): 1788-1792. doi: 10.7498/aps.44.1788
    [18] 汪卫华, 白海洋, 陈红, 张云, 王文魁. Ni在非晶Si中扩散机制的原位X射线衍射研究. 物理学报, 1993, 42(9): 1505-1509. doi: 10.7498/aps.42.1505
    [19] 田亮光, 朱南昌, 陈京一, 李润身, 许顺生, 周国良. 高完整GexSi1-x/Si应变超晶格的X射线双晶衍射研究. 物理学报, 1991, 40(3): 441-448. doi: 10.7498/aps.40.441
    [20] 杜光庭, 何开元, 陈煜廉. 用中子衍射方法研究钒对50%铁-钴合金长程有序的影响. 物理学报, 1965, 21(6): 1304-1307. doi: 10.7498/aps.21.1304
计量
  • 文章访问数:  5099
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-07
  • 修回日期:  2021-12-12
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回