搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锐钛矿金红石的高温原位X射线衍射研究

王玲 王河锦 李婷

引用本文:
Citation:

锐钛矿金红石的高温原位X射线衍射研究

王玲, 王河锦, 李婷

In situ high temperature X-ray diffraction study of anatase and rutile

Wang Ling, Wang He-Jin, Li Ting
PDF
导出引用
  • 对TiO2粉末进行了空气和真空条件下从室温到1200℃的加热原位X射线衍射实验, 得到了空气和真空条件下微米级锐钛矿颗粒转变为金红石的起始温度分别为850℃ 和855℃; 分别修正了空气条件下锐钛矿在(27850℃)范围和金红石在(9001200℃) 范围内的晶胞参数和真空条件下锐钛矿在(27850℃)范围和金红石在(9501200℃) 范围的晶胞参数, 从而得到了晶胞参数随温度变化的关系, 得到了锐钛矿和金红石在空气中和真空中的热膨胀系数, 并总结了热膨胀系数随温度变化的规律. 室温下锐钛矿在空气条件下的热膨胀系数为 a=4.5506310-6/℃, c=7.754310-6/℃, =16.8583610-6/℃; 真空下为 a=4.6942910-6/℃, c=9.0285010-6/℃, =18.6968810-6/℃. 室温下, 金红石在空气条件下的热膨胀系数为 a=6.8124310-6/℃, c=8.7164410-6/℃, =22.2217810-6/℃; 真空条件下为 a=6.0583410-6/℃, c= 8.3928010-6/℃, =20.5236210-6/℃.
    In situ X-ray diffraction patterns of the powder titania polymorphs are recorded in a temperature range from room temperature (RT) to 1200℃ in static air and vacuum. The results show that the temperature converting anatase into rutile is at 850℃ in static air and at 855℃ in vacuum. Lattice parameters for anatase (RT-850℃) and rutile (RT, 900-1200℃) in static air and those for anatase (27-850℃) and rutile (950-1200℃) in vacuum are refined. The variations of lattice parameters of anatase and rutile with temperature (℃) are therefore well described. Linear () and volume () thermal expansion coefficients of anatase (RT-850℃) and rutile (RT, 900-1200℃) are calculated. The change laws of and with temperature for anatase and rutile in static air and vacuum are summarized. At RT, the thermal expansion coefficients for anatase are a=4.5506310-6/℃, c=7.754310-6/℃, and =16.8583610-6/℃ in static air and a=4.6942910-6/℃, c=9.0285010-6/℃, and =18.6968810-6/℃ in vacuum while those for rutile are a=6.8124310-6/℃, c=8.7164410-6/℃, and =22.2217810-6/℃ in static air and a=6.0583410-6/℃, c=8.3928010-6/℃, and =20.5236210-6/℃ in vacuum, respectively.
    • 基金项目: 国家自然科学基金(批准号: 40972038, 40872034)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 40972038, 40872034).
    [1]

    Gratzel M 2004 J. Photochem. Photobiol. A Chemistry 164 3

    [2]

    Shankara S K, Jaldappagari S, Prashanth S N 2010 Colloids Surf. B: Biointerfaces 78 217

    [3]

    Tan B, Wu Y Y 2006 J. Phys. Chem. B 110 15932

    [4]

    Ibrahim A. Al-Homoudi, Thakur J S, Naik R, Auner G W, Newaz G 2007 Appl. Surf. Sci. 253 8607

    [5]

    Sheng Y, Zhou B, Liu Y H, Zhao X, Wang C Y, Pan Y, Wang Z C 2006 Mater. Lett. 60 1327

    [6]

    Ikezawa S,Mutsuga F, Kubota T, Suzuki R, Baba K, Koh S, Yoshioka T, Nishiwaki A, Kida K, Ninomiya Y, Wakita K 2000 Vacuum 59 514

    [7]

    Wang K J, Hu L H, Dai S Y 2005 Acta Phys. Sin. 54 1914 (in Chinese) [王孔嘉, 胡林华, 戴松元 2005 物理学报 54 1914]

    [8]

    Liang J K, Rao G H, Song G B, Liu F S, Peng T J 2002 Acta Phys. Sin. 51 2793 (in Chinese) [梁敬魁, 饶光辉, 宋功保, 刘福生, 彭同江 2002 物理学报 51 2793]

    [9]

    Shanaghi A, Sabour A R, Shahrabi T, Aliofkhazraee M 2009 Protect. Metals Phys. Chem. Surf. 45 305

    [10]

    Abdel Aal A 2008 Mater. Sci. Eng. A 474 181

    [11]

    Shannon R D, Pask J A 1965 J. Am. Ceram. Soc. 48 391

    [12]

    José Manuel G A, Vicente S E, Guido B 1995 J. Mater. Chem. 5 1245

    [13]

    Gribb A A, Banfield J F 1997 Am. Mineral. 82 717

    [14]

    Balikdjian J P, Davidson A, Launay S, Eckert H, Che M 2000 J. Phys. Chem. B 104 8931

    [15]

    Jagtap N, Bhagwat M, Awati P, Ramaswamy V 2005 Thermochim. Acta 47 37

    [16]

    Zheng Y F, Li G H, Tian W, Ma C A 2007 Chin. J. Inorganic Chem. 23 1121 (in Chinese) [郑遗凡, 李国华, 田伟, 马淳安 2007 无机化学学报 23 1121]

    [17]

    Céline P, Renaud R, Durupthy O, Cassaignon S, Jolivet J P 2010 Solid State Sci. 12 989

    [18]

    Ma L J, Guo L J 2011 Spectroscopy and Spectral Analysis 31 1133 (in Chinese) [马利静, 郭烈锦 2011 光谱与光谱学分析 31 1133]

    [19]

    Cromer D T, Herrington K 1955 J. Am. Chem. Soc. 77 4708

    [20]

    Rao K V K, Naidu S V N, Iyengar L 1970 J. Am. Ceram. Soc. 53 124

    [21]

    Horn M, Schwerdtfdger C F 1972 Z. Kristallogr. 136 273

    [22]

    Meagher E P, Lager G A 1979 Can. Mineral. 17 77

    [23]

    Sugiyama K, Takeuchi Y 1991 Z. Kristallogr. 194 305

    [24]

    Hummer D R, Heaney P J, Post J E 2007 Powder Diffr. 22 352

    [25]

    Wang H J 1994 J. Appl. Crystallogr. 27 716

    [26]

    Wang H J, Zhou J 2000 J. Appl. Crystallogr. 33 1128

  • [1]

    Gratzel M 2004 J. Photochem. Photobiol. A Chemistry 164 3

    [2]

    Shankara S K, Jaldappagari S, Prashanth S N 2010 Colloids Surf. B: Biointerfaces 78 217

    [3]

    Tan B, Wu Y Y 2006 J. Phys. Chem. B 110 15932

    [4]

    Ibrahim A. Al-Homoudi, Thakur J S, Naik R, Auner G W, Newaz G 2007 Appl. Surf. Sci. 253 8607

    [5]

    Sheng Y, Zhou B, Liu Y H, Zhao X, Wang C Y, Pan Y, Wang Z C 2006 Mater. Lett. 60 1327

    [6]

    Ikezawa S,Mutsuga F, Kubota T, Suzuki R, Baba K, Koh S, Yoshioka T, Nishiwaki A, Kida K, Ninomiya Y, Wakita K 2000 Vacuum 59 514

    [7]

    Wang K J, Hu L H, Dai S Y 2005 Acta Phys. Sin. 54 1914 (in Chinese) [王孔嘉, 胡林华, 戴松元 2005 物理学报 54 1914]

    [8]

    Liang J K, Rao G H, Song G B, Liu F S, Peng T J 2002 Acta Phys. Sin. 51 2793 (in Chinese) [梁敬魁, 饶光辉, 宋功保, 刘福生, 彭同江 2002 物理学报 51 2793]

    [9]

    Shanaghi A, Sabour A R, Shahrabi T, Aliofkhazraee M 2009 Protect. Metals Phys. Chem. Surf. 45 305

    [10]

    Abdel Aal A 2008 Mater. Sci. Eng. A 474 181

    [11]

    Shannon R D, Pask J A 1965 J. Am. Ceram. Soc. 48 391

    [12]

    José Manuel G A, Vicente S E, Guido B 1995 J. Mater. Chem. 5 1245

    [13]

    Gribb A A, Banfield J F 1997 Am. Mineral. 82 717

    [14]

    Balikdjian J P, Davidson A, Launay S, Eckert H, Che M 2000 J. Phys. Chem. B 104 8931

    [15]

    Jagtap N, Bhagwat M, Awati P, Ramaswamy V 2005 Thermochim. Acta 47 37

    [16]

    Zheng Y F, Li G H, Tian W, Ma C A 2007 Chin. J. Inorganic Chem. 23 1121 (in Chinese) [郑遗凡, 李国华, 田伟, 马淳安 2007 无机化学学报 23 1121]

    [17]

    Céline P, Renaud R, Durupthy O, Cassaignon S, Jolivet J P 2010 Solid State Sci. 12 989

    [18]

    Ma L J, Guo L J 2011 Spectroscopy and Spectral Analysis 31 1133 (in Chinese) [马利静, 郭烈锦 2011 光谱与光谱学分析 31 1133]

    [19]

    Cromer D T, Herrington K 1955 J. Am. Chem. Soc. 77 4708

    [20]

    Rao K V K, Naidu S V N, Iyengar L 1970 J. Am. Ceram. Soc. 53 124

    [21]

    Horn M, Schwerdtfdger C F 1972 Z. Kristallogr. 136 273

    [22]

    Meagher E P, Lager G A 1979 Can. Mineral. 17 77

    [23]

    Sugiyama K, Takeuchi Y 1991 Z. Kristallogr. 194 305

    [24]

    Hummer D R, Heaney P J, Post J E 2007 Powder Diffr. 22 352

    [25]

    Wang H J 1994 J. Appl. Crystallogr. 27 716

    [26]

    Wang H J, Zhou J 2000 J. Appl. Crystallogr. 33 1128

  • [1] 程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧. 准一维层状半导体Nb4P2S21单晶的面内光学各向异性. 物理学报, 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [2] 蒋东镔, 张颖, 姜大朋, 朱斌, 李纲, 孙立, 黄征, 卢峰, 谢娜, 周凯南, 粟敬钦. Nd, Gd:SrF2晶体材料在宽带放大中的光谱增益特性. 物理学报, 2023, 72(22): 224208. doi: 10.7498/aps.72.20230972
    [3] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [4] 袁永浩, 薛其坤, 李渭. FeSe/SrTiO3高温超导体中的电子条纹相. 物理学报, 2022, 71(12): 127304. doi: 10.7498/aps.71.20220118
    [5] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [6] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [7] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [8] 王鹏, 潘凤春, 郭晶晶, 李婷婷, 王旭明. 用双稳态势场模型研究观点转变的驱动-响应关系. 物理学报, 2020, 69(6): 060501. doi: 10.7498/aps.69.20191516
    [9] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [10] 王庆玲, 迪拉热·哈力木拉提, 沈玉玲, 艾尔肯·斯地克. 多面体共替代对Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+晶体结构和发光颜色的影响. 物理学报, 2019, 68(10): 100701. doi: 10.7498/aps.68.20182272
计量
  • 文章访问数:  6037
  • PDF下载量:  697
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-19
  • 修回日期:  2013-04-04
  • 刊出日期:  2013-07-05

/

返回文章
返回