搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压高应变率加载下多晶相变的原位X射线衍射

陈小辉 谭伯仲 薛桃 马云灿 靳赛 李志军 辛越峰 李晓亚 李俊

引用本文:
Citation:

高压高应变率加载下多晶相变的原位X射线衍射

陈小辉, 谭伯仲, 薛桃, 马云灿, 靳赛, 李志军, 辛越峰, 李晓亚, 李俊

In situ observation of phase transition in polycrystalline under high-pressure high-strain-rate shock compression by X-ray diffraction

Chen Xiao-Hui, Tan Bo-Zhong, Xue Tao, Ma Yun-Can, Jin Sai, Li Zhi-Jun, Xin Yue-Feng, Li Xiao-Ya, Li Jun
PDF
HTML
导出引用
  • 高功率激光可通过直接烧蚀产生高温、高压、高应变率的物质状态, 同时也可驱动金属箔产生与之精密同步的超短超强X射线源, 成为利用原位X射线衍射技术研究材料在极端高温、高压、高应变率下相变动力学的重要实验平台. 本文基于原型高功率激光装置建立高压、高应变率加载下材料相变的原位X射线衍射诊断平台, 并以典型金属钒和铁为例开展冲击相变的原位观测. 实验表明, 在高应变率($ {10^{8}} —{10^{9}}\;{{\rm{s}}^{ - 1}} $)冲击加载下, 金属钒在69 GPa时依然保持体心立方结构不变, 而金属铁在159 GPa时已经由体心立方结构转变为六角密排结构, 均与文献报道一致. 同时原位X射线衍射实验测量的材料压缩特性与宏观Hugoniot曲线符合得很好. 利用原位X射线衍射技术研究高应变率动态加载下材料的相变行为对理解材料相变的应变率效应和动力学过程具有重要的科学意义, 同时对提高材料工程服役的可靠性以及突破材料极端环境服役的发展瓶颈具有重要的工程价值.
    The knowledge of phase transition of material under dynamic loading is an important area of research in inertial confinement fusion and material science. Though the shock-induced phase transitions of various materials over a broad pressure range have become a field of study for decades, the loading strain rates in most of these experiments is not more than $ {10^{6}}\;{{\rm{s}}^{ - 1}} $. However, in contrast with the strain rate range where the phase diagram is a good predictor of the crystal structure of a material, at higher strain rate ($ > {10^{6}}\;{{\rm{s}}^{ - 1}} $) the phase diagram measured can be quite different not only in shifting the boundary line between various phases, but also in giving a different sequence of crystal structure. High-power laser facility can drive shock wave and simultaneously provide a precisely synchronized ultra-short and ultra-intense X-ray source. Here, based on the Prototype laser facility, an in situ X-ray diffraction platform for diagnosing shock-induced phase transition of polycrystalline material is established. The in situ observation of material phase transition under high-strain-rate shock loading is carried out with typical metals of vanadium and iron. Diffraction results are consistent with vanadium remaining in the body-centered-cubic structure up to 69 GPa, while iron transforms from the body-centered-cubic structure into hexagonal-close-packed structure at 159 GPa. The compressive properties of vanadium and iron obtained in in situ X-ray diffraction experiment are in good agreement with their macroscopic Hugonoit curves. The decrease in the lattice volume over the pressure step period yields a strain rate on the order of $ {10^{8}} - {10^{9}}\;{{\rm{s}}^{ - 1}} $. The available of the presented in situ X-ray diffraction plateform offers the potential to extend our understanding of the kinetics of phase transition in polycrystalline under high-pressure high-strain-rate shock compression.
      通信作者: 陈小辉, chenxh1988@126.com ; 李俊, lijun102@caep.cn
    • 基金项目: 科学挑战专题(批准号: JCKY2016212A501)、国家自然科学基金(批准号: 11802290, 11704357)和科工局稳定支持项目(批准号: JCKYS2018212004, JCKYS2018212002)资助的课题
      Corresponding author: Chen Xiao-Hui, chenxh1988@126.com ; Li Jun, lijun102@caep.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. JCKY2016212A501), the National Natural Science Foundation of China (Grant Nos. 11802290, 11704357), and the National Key Laboratory of Shock Wave and Detonation Physics (Grant Nos. JCKYS2018212004, JCKYS2018212002), China
    [1]

    Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701Google Scholar

    [2]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507Google Scholar

    [3]

    Amadou N, Resseguier T, Brambrink E, Vinci T, Benuzzi-Mounaix A, Huser G, Morard G, Guyot F, Miyanishi K, Ozaki N, Kodama R, Koenig M 2016 Phys. Rev. B 93 214108Google Scholar

    [4]

    Gorman M G, Coleman A L, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Galtier E, Lee H J, Granados E, Sliwa M, Sanloup C, Rothman S, Fratanduono D E, Smith R F, Collins G W, Eggert J H, Wark J S, McMahon M I 2018 Sci. Rep. 8 16927Google Scholar

    [5]

    Armstrong M R, Radousky H B, Austin R A, Stavrou E, Zong H, Ackland G J, Brown S, Crowhurst J C, Gleason A E, Granados E, Grivickas P, Holtgrewe N, Lee H J, Li T T, Lobanov S, McKeown J T, Nagler R, Nam I, Nelson A J, Prakapenka V, Prescher C, Roehling J D, Teslich N E, Walter P, Goncharov A F, Belof J L 2018 arXiv:1808.02181v1

    [6]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872Google Scholar

    [7]

    Maddox B R, Park H S, Remington B A, Chen C, Chen S, Prisbrey S T, Comley A, Back C A, Szabo C, Seely J F, Feldman U, Hudson L T, Seltzer S, Haugh M J, Ali Z 2011 Phys. Plasmas 18 056709Google Scholar

    [8]

    Turneaure S J, Sinclair N, Gupta Y M 2016 Phys. Rev. Lett. 117 045502Google Scholar

    [9]

    Sharma S M, Turneaure S J, Winey J M, Li Y, Rigg P, Schuman A, Sinclair N, Toyoda Y, wang X, Weir N, Zhang J, Gupta Y M 2019 Phys. Rev. Lett. 123 045702Google Scholar

    [10]

    Milathianaki D, Boutet S, Williams G J, Higginbotham A, Ratner D, Gleason A E, Messerschmidt M, Seibert M M, Swift D C, Hering P, Robinson J, White W E, Wark J S 2013 Science 342 220Google Scholar

    [11]

    Coleman A L, Gorman M G, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Fratanduono D E, Smith R F, Galtier E, Lee H J, Nagler B, Granados E, Collins G W, Eggert J H, Wark J S, McMahon M I 2019 Phys. Rev. Lett. 122 255704Google Scholar

    [12]

    Coppari F, Smith R F, Eggert J H, Wang J, Rygg J R, Lazicki A, Hawreliak J A, Collins G W, Duffy T S 2013 Nat. Geosci. 6 926Google Scholar

    [13]

    Wang J, Coppari F, Smith R F, Eggert J H, Lazicki A E, Fratanduono D E, Rygg J R, Boehly T R, Collins G W, Duffy T S 2016 Phys. Rev. B 94 104102Google Scholar

    [14]

    Wicks J K, Smith R F, Fratanduono D E, Coppari F, Kraus R G, Newman M G, Rygg J R, Eggert J H, Duffy T S 2018 Sci. Adv. 4 eaao5864Google Scholar

    [15]

    Chen X, Xue T, Liu D, Yang Q, Luo B, Mu Li, Li X, Li J 2018 Rev. Sci. Instrum. 89 013904Google Scholar

    [16]

    McCoy C A, Marshall M C, Polsin D N, Fratanduono D E, Celliers P M, Meyerhofer D D, Boehly T R 2019 Phys. Rev. B 100 014106Google Scholar

    [17]

    Lazicki A, Rygg J R, Coppari F, Smith R, Fratanduono D, Kraus R G, Collins G W, Briggs R, Braun D G, Swift D C, Eggert J H 2015 Phys. Rev. Lett. 115 075502Google Scholar

    [18]

    李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃 2017 物理学报 66 136101Google Scholar

    Li J, Chen X H, Wu Q, Luo B Q, Li M, Yang Q G, Tao T J, Jin K, Geng H Y, Tan Y, Xue T 2017 Acta Phys. Sin. 66 136101Google Scholar

    [19]

    Swift D C, Tierney T E, Kopp R A, Gammel J T 2004 Phys. Rev. E 69 036406Google Scholar

    [20]

    Weng J D, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101Google Scholar

    [21]

    Gathers G R 1986 J. Appl. Phys. 59 3291Google Scholar

    [22]

    Browna J M, Fritz J N, Hixson R S 2000 J. Appl. Phys. 88 5496Google Scholar

    [23]

    Schollmeier M, Ao T, Field E S, Galloway B R, Kalita P, Kimmel M W, Morgan D V, Rambo P K, Schwarz J, Shores J E, Smith I C, Speas C S, Benage J F, Porter J L 2018 Rev. Sci. Instrum. 89 10F102

    [24]

    Vignes R M, Ahmed M F, Eggert J H, Fisher A C, Kalantar D H, Masters N D, Smith C A, Smith R F 2016 J. Phys. Conf. Ser. 717 012115Google Scholar

    [25]

    Moriarty J A 1992 Phys. Rev. B 45 2004Google Scholar

    [26]

    Ding Y, Ahuja R, Shu J, Chow P, Luo W, Mao H K 2007 Phys. Rev. Lett. 98 085502Google Scholar

    [27]

    Qiu S L, Marcus P M 2008 J. Phys. Condens. Matter 20 275218Google Scholar

    [28]

    俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202Google Scholar

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202Google Scholar

    [29]

    Foster J M, Comley A J, Case G S, Avraam P, Rothman S D, Higginbotham A, Floyd E K, Gumbrell E T, Luis J J, McGonegle D, Park N T, Peacock L J, Poulter C P, Suggit M J, Wark J S 2017 J. Appl. Phys. 122 025117Google Scholar

    [30]

    Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359Google Scholar

    [31]

    Denoeud A, Ozaki N, Benuzzi-Mounaix A, et al. 2016 Proc. Natl. Acad. Sci. U.S.A. 113 7745

  • 图 1  基于原型装置的材料冲击相变原位X射线衍射探测系统图以及样品区局部放大图

    Fig. 1.  Experimental setup for in situ X-ray diffraction of shock-compressed polycrystalline. A schematic of the target is shown below.

    图 2  (a)冲击压力为 (69.36 ± 9.31) GPa时多晶钒原位X射线衍射图像; (b)平面晶体谱仪测量的高功率激光驱动钒箔产生的X射线源能谱, 能谱中主要是${\rm{H}}{{\rm{e}}_\alpha }$线

    Fig. 2.  (a) In situ X-ray diffraction image recoded for vanadium under pressure of (69.36 ± 9.31) GPa; (b) the X-ray spectrum emitted by the resulting vanadium foil is measured with crystal spectrometer and shows the dominant ${\rm{H}}{{\rm{e}}_\alpha }$ line.

    图 3  (a)通过坐标变换将钒原位X射线衍射图像转换到$2\theta \text{-} \phi$空间; (b)沿$\phi$方向积分并扣除本底后得到一维X射线衍射曲线; (c)激光干涉测速仪(DISAR)测量的钒样品自由面粒子速度演化历史, 据此可计算样品压力; (d)原位X射线衍射实验测量的压力与压缩比($\rho/\rho_{0}$)的关系, 实线代表轻气炮测量得到的钒Hugoniot曲线

    Fig. 3.  (a) X-ray diffraction data for shock-compressed vanadium projected into $2\theta \text{-} \phi$ space; (b) the corresponding background-subtracted one-dimensional X-ray diffraction pattern; (c) the free surface velocity of vanadium recorded by the DISAR system; (d) pressure vs. compression ratio ($\rho/\rho_{0}$) for vanadium, where Hugoniot measurements from gas gun experiments are shown as solid line.

    图 4  (a)冲击压力为 (159.30 ± 6.11) GPa时多晶铁原位X射线衍射图像; (b)平面晶体谱仪测量的高功率激光驱动铁箔产生的X射线源能谱, 能谱中主要是${\rm{H}}{{\rm{e}}_\alpha }$线

    Fig. 4.  (a) In situ X-ray diffraction image recoded for iron under pressure of (159.30 ± 6.11) GPa; (b) the X-ray spectrum emitted by the resulting iron foil is measured with crystal spectrometer and shows the dominant ${\rm{H}}{{\rm{e}}_\alpha }$ line.

    图 5  (a)通过坐标变换将铁原位X射线衍射图像转换到$2\theta\text{-}\phi$空间; (b)沿$\phi$方向积分并扣除本底后得到一维X射线衍射曲线; (c)激光干涉测速仪(DISAR)测量的铁样品自由面粒子速度演化历史, 据此可计算样品压力; (d)原位X射线衍射实验测量的压力与压缩比($\rho/\rho_{0}$)的关系, 实线代表轻气炮测量得到的铁Hugoniot曲线

    Fig. 5.  (a) X-ray diffraction data for shock-compressed iron projected into $2\theta\text{-}\phi$ space; (b) the corresponding background-subtracted one-dimensional X-ray diffraction pattern; (c) the free surface velocity of iron recorded by the DISAR system; (d) pressure vs. compression ratio ($\rho/\rho_{0}$) for iron, where Hugoniot measurements from gas gun experiments are shown as solid line.

    表 1  金属钒[21]和铁[22]材料性质常数

    Table 1.  Parameters for vanadium and iron.

    Material$\rho_{0}/{\rm g}\!\cdot\! {\rm {cm} }^{-3}$$C_{0}/{\rm {km} }\!\cdot\! {\rm s}^{-1}$$\lambda$
    V6.1055.0441.242
    Fe7.8503.9351.578
    下载: 导出CSV
  • [1]

    Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701Google Scholar

    [2]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507Google Scholar

    [3]

    Amadou N, Resseguier T, Brambrink E, Vinci T, Benuzzi-Mounaix A, Huser G, Morard G, Guyot F, Miyanishi K, Ozaki N, Kodama R, Koenig M 2016 Phys. Rev. B 93 214108Google Scholar

    [4]

    Gorman M G, Coleman A L, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Galtier E, Lee H J, Granados E, Sliwa M, Sanloup C, Rothman S, Fratanduono D E, Smith R F, Collins G W, Eggert J H, Wark J S, McMahon M I 2018 Sci. Rep. 8 16927Google Scholar

    [5]

    Armstrong M R, Radousky H B, Austin R A, Stavrou E, Zong H, Ackland G J, Brown S, Crowhurst J C, Gleason A E, Granados E, Grivickas P, Holtgrewe N, Lee H J, Li T T, Lobanov S, McKeown J T, Nagler R, Nam I, Nelson A J, Prakapenka V, Prescher C, Roehling J D, Teslich N E, Walter P, Goncharov A F, Belof J L 2018 arXiv:1808.02181v1

    [6]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872Google Scholar

    [7]

    Maddox B R, Park H S, Remington B A, Chen C, Chen S, Prisbrey S T, Comley A, Back C A, Szabo C, Seely J F, Feldman U, Hudson L T, Seltzer S, Haugh M J, Ali Z 2011 Phys. Plasmas 18 056709Google Scholar

    [8]

    Turneaure S J, Sinclair N, Gupta Y M 2016 Phys. Rev. Lett. 117 045502Google Scholar

    [9]

    Sharma S M, Turneaure S J, Winey J M, Li Y, Rigg P, Schuman A, Sinclair N, Toyoda Y, wang X, Weir N, Zhang J, Gupta Y M 2019 Phys. Rev. Lett. 123 045702Google Scholar

    [10]

    Milathianaki D, Boutet S, Williams G J, Higginbotham A, Ratner D, Gleason A E, Messerschmidt M, Seibert M M, Swift D C, Hering P, Robinson J, White W E, Wark J S 2013 Science 342 220Google Scholar

    [11]

    Coleman A L, Gorman M G, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Fratanduono D E, Smith R F, Galtier E, Lee H J, Nagler B, Granados E, Collins G W, Eggert J H, Wark J S, McMahon M I 2019 Phys. Rev. Lett. 122 255704Google Scholar

    [12]

    Coppari F, Smith R F, Eggert J H, Wang J, Rygg J R, Lazicki A, Hawreliak J A, Collins G W, Duffy T S 2013 Nat. Geosci. 6 926Google Scholar

    [13]

    Wang J, Coppari F, Smith R F, Eggert J H, Lazicki A E, Fratanduono D E, Rygg J R, Boehly T R, Collins G W, Duffy T S 2016 Phys. Rev. B 94 104102Google Scholar

    [14]

    Wicks J K, Smith R F, Fratanduono D E, Coppari F, Kraus R G, Newman M G, Rygg J R, Eggert J H, Duffy T S 2018 Sci. Adv. 4 eaao5864Google Scholar

    [15]

    Chen X, Xue T, Liu D, Yang Q, Luo B, Mu Li, Li X, Li J 2018 Rev. Sci. Instrum. 89 013904Google Scholar

    [16]

    McCoy C A, Marshall M C, Polsin D N, Fratanduono D E, Celliers P M, Meyerhofer D D, Boehly T R 2019 Phys. Rev. B 100 014106Google Scholar

    [17]

    Lazicki A, Rygg J R, Coppari F, Smith R, Fratanduono D, Kraus R G, Collins G W, Briggs R, Braun D G, Swift D C, Eggert J H 2015 Phys. Rev. Lett. 115 075502Google Scholar

    [18]

    李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃 2017 物理学报 66 136101Google Scholar

    Li J, Chen X H, Wu Q, Luo B Q, Li M, Yang Q G, Tao T J, Jin K, Geng H Y, Tan Y, Xue T 2017 Acta Phys. Sin. 66 136101Google Scholar

    [19]

    Swift D C, Tierney T E, Kopp R A, Gammel J T 2004 Phys. Rev. E 69 036406Google Scholar

    [20]

    Weng J D, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101Google Scholar

    [21]

    Gathers G R 1986 J. Appl. Phys. 59 3291Google Scholar

    [22]

    Browna J M, Fritz J N, Hixson R S 2000 J. Appl. Phys. 88 5496Google Scholar

    [23]

    Schollmeier M, Ao T, Field E S, Galloway B R, Kalita P, Kimmel M W, Morgan D V, Rambo P K, Schwarz J, Shores J E, Smith I C, Speas C S, Benage J F, Porter J L 2018 Rev. Sci. Instrum. 89 10F102

    [24]

    Vignes R M, Ahmed M F, Eggert J H, Fisher A C, Kalantar D H, Masters N D, Smith C A, Smith R F 2016 J. Phys. Conf. Ser. 717 012115Google Scholar

    [25]

    Moriarty J A 1992 Phys. Rev. B 45 2004Google Scholar

    [26]

    Ding Y, Ahuja R, Shu J, Chow P, Luo W, Mao H K 2007 Phys. Rev. Lett. 98 085502Google Scholar

    [27]

    Qiu S L, Marcus P M 2008 J. Phys. Condens. Matter 20 275218Google Scholar

    [28]

    俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202Google Scholar

    Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202Google Scholar

    [29]

    Foster J M, Comley A J, Case G S, Avraam P, Rothman S D, Higginbotham A, Floyd E K, Gumbrell E T, Luis J J, McGonegle D, Park N T, Peacock L J, Poulter C P, Suggit M J, Wark J S 2017 J. Appl. Phys. 122 025117Google Scholar

    [30]

    Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359Google Scholar

    [31]

    Denoeud A, Ozaki N, Benuzzi-Mounaix A, et al. 2016 Proc. Natl. Acad. Sci. U.S.A. 113 7745

  • [1] 赵卫, 付士杰, 盛泉, 薛凯, 史伟, 姚建铨. 辅助光对高功率掺镱光纤激光放大器受激拉曼散射效应的抑制作用. 物理学报, 2024, 73(20): 204201. doi: 10.7498/aps.73.20240895
    [2] 谢静, 王利, 刘崇, 张艳丽, 刘强, 汪涛, 柴志豪, 夏志强, 杨琳, 张攀政, 朱宝强. 神光II升级激光装置基频输出能力提升. 物理学报, 2023, 72(19): 194202. doi: 10.7498/aps.72.20230643
    [3] 华颖鑫, 陈小辉, 李俊, 郝龙, 孙毅, 王玉峰, 耿华运. 钒的冲击熔化原位X射线衍射测量研究. 物理学报, 2022, 71(7): 076201. doi: 10.7498/aps.71.20212065
    [4] 谢普初, 汪小松, 胡昌明, 胡建波, 张凤国, 王永刚. 非一维应变冲击加载下高纯铜初始层裂行为. 物理学报, 2020, 69(3): 034601. doi: 10.7498/aps.69.20191104
    [5] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [6] 李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃. 基于原位X射线衍射技术的动态晶格响应测量方法研究. 物理学报, 2017, 66(13): 136101. doi: 10.7498/aps.66.136101
    [7] 谭叶, 俞宇颖, 戴诚达, 于继东, 王青松, 谭华. 金属Bi的卸载熔化实验研究. 物理学报, 2013, 62(3): 036401. doi: 10.7498/aps.62.036401
    [8] 王玲, 王河锦, 李婷. 锐钛矿金红石的高温原位X射线衍射研究. 物理学报, 2013, 62(14): 146402. doi: 10.7498/aps.62.146402
    [9] 张国文, 卢兴强, 曹华保, 尹宪华, 吕凤年, 张臻, 李菁辉, 王仁贵, 马伟新, 朱俭. 高功率激光光束经颗粒污染后的近场衍射效应. 物理学报, 2012, 61(2): 024201. doi: 10.7498/aps.61.024201
    [10] 谭叶, 俞宇颖, 戴诚达, 谭华, 王青松, 王翔. 反向碰撞法测量Bi的低压Hugoniot数据. 物理学报, 2011, 60(10): 106401. doi: 10.7498/aps.60.106401
    [11] 马文, 祝文军, 张亚林, 经福谦. 纳米多晶铁的冲击相变研究. 物理学报, 2011, 60(6): 066404. doi: 10.7498/aps.60.066404
    [12] 蔡朝斌, 赵建林, 彭涛, 李东. 高功率激光系统中随机分布缺陷产生的"热像". 物理学报, 2011, 60(11): 114209. doi: 10.7498/aps.60.114209
    [13] 刘勋, 周显明, 李俊, 李加波, 操秀霞. 一种高密度玻璃的多形性高压相变和物态方程研究. 物理学报, 2010, 59(8): 5626-5634. doi: 10.7498/aps.59.5626
    [14] 陈大年, 范春雷, 胡金伟, 谭华, 王焕然, 吴善幸, 俞宇颖. 高导无氧铜的高压与高应变率本构模型研究. 物理学报, 2009, 58(4): 2612-2618. doi: 10.7498/aps.58.2612
    [15] 王友文, 邓剑钦, 文双春, 唐志祥, 傅喜泉, 范滇元. 宽频带光束非线性热像效应的实验研究. 物理学报, 2009, 58(3): 1738-1744. doi: 10.7498/aps.58.1738
    [16] 冯则胡, 傅喜泉, 章礼富, 徐慧文, 文双春. 超短脉冲激光空间调制下小尺度自聚焦的实验研究. 物理学报, 2008, 57(4): 2253-2259. doi: 10.7498/aps.57.2253
    [17] 王友文, 胡勇华, 文双春, 游开明, 傅喜泉. 高斯光束非线性“热像”效应研究. 物理学报, 2007, 56(10): 5855-5861. doi: 10.7498/aps.56.5855
    [18] 谢良平, 赵建林, 粟敬钦, 景 峰, 王文义, 彭翰生. 位相调制产生“热像”效应理论研究. 物理学报, 2004, 53(7): 2175-2179. doi: 10.7498/aps.53.2175
    [19] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响. 物理学报, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [20] 田亮光, 朱南昌, 陈京一, 李润身, 许顺生, 周国良. 高完整GexSi1-x/Si应变超晶格的X射线双晶衍射研究. 物理学报, 1991, 40(3): 441-448. doi: 10.7498/aps.40.441
计量
  • 文章访问数:  8312
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-16
  • 修回日期:  2020-07-15
  • 上网日期:  2020-11-27
  • 刊出日期:  2020-12-20

/

返回文章
返回