搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神光II升级激光装置基频输出能力提升

谢静 王利 刘崇 张艳丽 刘强 汪涛 柴志豪 夏志强 杨琳 张攀政 朱宝强

引用本文:
Citation:

神光II升级激光装置基频输出能力提升

谢静, 王利, 刘崇, 张艳丽, 刘强, 汪涛, 柴志豪, 夏志强, 杨琳, 张攀政, 朱宝强

Improvement of fundamental frequency performance of SGII-UP laser facility

Xie Jing, Wang Li, Liu Chong, Zhang Yan-Li, Liu Qiang, Wang Tao, Chai Zhi-Hao, Xia Zhi-Qiang, Yang Lin, Zhang Pan-Zheng, Zhu Bao-Qiang
PDF
HTML
导出引用
  • 神光II升级装置是国际上为数不多常年运行的惯性约束核聚变激光装置, 为进一步提升其输出能力以满足更高物理需求, 采用新型钕玻璃, 并结合增加钕玻璃数、提高氙灯能源配置等措施来提升主放大器的增益能力. 改进后的测试表明装置的平均小信号增益系数从4.15% cm增至4.94% cm, 单路小信号增益倍数从9000提升到118000, 提升幅度超过了1个数量级, 有效降低了高通量下非线性相移引起的激光近场小尺寸调制, 提升了装置基频输出能力, 为实现更高的打靶能量奠定关键基础. 运行打靶验证了装置高峰值功率下基频近场调制的改善, 以及10 ns脉冲12.5 kJ的基频输出能力, 有力支撑了高通量要求的物理实验目标 .
    The SGII-UP laser facility is one of the most important high power laser systems in China, and it is also one of a few inertial confinement fusion laser devices that operate all year round in the world. In order to further improve its output capacity to meet higher physical requirements, measures such as increasing the number of neodymium glasses, adopting new N41 neodymium glasses, and improving the energy configuration of xenon lamps are taken to improve the gain capacity of the main amplifier. Calculation of the new main amplifier construction model predicts that the small gain coefficient will reach 4.9%. And further modulation of the laser device shows that when the output of 10 kJ fundamental frequency energy is needed, the injection energy decreases from 5 J to 1.26 J, which supports a higher output energy and a stronger basic frequency output capability. Furthermore, it is analyzed that under different laser pulse injection conditions of 1, 5, 10 ns, the B integral is obviously reduced, which means that the near-filed quality of the beams is better. According a small-size modulation suppression is induced by nonlinear phase shift, and high-fluence laser is expected to pass before and after the improvement, which is a key prerequisite for a higher output energy. Based on these analyses, fundamental frequency output energy values with different pulse injections are calculated and an improvement from 8 kJ to 12.5 kJ output is expected under 10 ns square pulse condition. Tests show that the small signal gain coefficient of the device increases from 4.15% cm to 4.94% cm, which is consistent with simulation results, and the average gain multiple of a single beam increases from 9000 to 118000, which is an order of magnitude higher. The output verifies the fundamental frequency output capacity exceeding 12.5 kJ under 10 ns square pulse as well as a small-size modulation suppression around 0.16 mm–1 as a result of joint action of non-linear phase shift and spatial filtering. After the significant improvement, the SGII-UP laser facility will strongly support more ambitious physical experiment targets.
      通信作者: 张攀政, nwpuzhangpanzheng@163.com
    • 基金项目: 中国科学院战略性先导科技专项 A 类 (批准号: XDA25010100)资助的课题.
      Corresponding author: Zhang Pan-Zheng, nwpuzhangpanzheng@163.com
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant No. XDA25010100).
    [1]

    Haynam C A, Wegner P J, Auerbach J M, et al. 2007 B. M. Appl. Opt. 46 3276Google Scholar

    [2]

    Vivini P, Nicolaizeau M 2015 Proc. SPIE 9345 934503Google Scholar

    [3]

    高妍绮, 朱宝强, 刘代中, 彭增云, 林尊琪 2011 物理学报 60 065204Google Scholar

    Gao Y Q, Zhu B Q, Liu D Z, Peng Z Y, Lin Z Q 2011 Acta Phys. Sin. 60 065204Google Scholar

    [4]

    Touze G L, Cabourdin O, Mengue J F, Guenet M, Grebot E, Seznec S E, Jancaitis K S, Marshall C D, Zapata L E, Erlandson A E 1999 Proc. SPIE 3492 630Google Scholar

    [5]

    张华, 范滇元 2001 物理学报 50 2375Google Scholar

    Zhang H, Fan D Y 2001 Acta Phys. Sin. 50 2375Google Scholar

    [6]

    周文远, 田建国, 臧维平, 刘智波, 张春平, 张光寅 2004 物理学报 53 620Google Scholar

    Zhou W Y, Tian J G, Zang W P, Liu Z B, Zhang C P, Zhang G Y 2004 Acta Phys. Sin. 53 620Google Scholar

    [7]

    Stuart B C, Herman S, Rubenchik A M, Shore B W, Perry M D 1996 Phys. Rev. B 53 1749Google Scholar

    [8]

    Gao Y Q, Ma W X, Zhu B Q, et al. 2013 IEEE Photonics Conference Bellevue, WA, USA, September 1, 2013 p73

    [9]

    郭爱林, 朱海东, 杨泽平, 李恩德, 谢兴龙, 朱健强, 林尊琪, 马伟新, 朱俭 2013 光学学报 33 0214001Google Scholar

    Guo A L, Zhu H D, Yang Z P, Li E D, Xie X L, Zhu J Q, Lin Z Q, Ma W X, Zhu J 2013 Acta Opt. Sin. 33 0214001Google Scholar

    [10]

    田超, 单连强, 周维民, 高喆, 谷渝秋, 张保汉 2014 物理学报 63 125205Google Scholar

    Tian C, Shan L Q, Zhou W M, Gao Z, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 125205Google Scholar

    [11]

    张喆, 远晓辉, 张翌航, 刘浩, 方可, 张成龙, 刘正东, 赵旭, 董全力, 刘高扬, 戴羽, 谷昊琛, 李玉同, 郑坚, 仲佳勇, 张杰 2022 物理学报 71 155201Google Scholar

    Zhang Z, Yuan X H, Zhang Y H, Liu H, Fang K, Zhang C L, Liu Z D, Zhao X, Dong Q L, Liu G Y, Dai Y, Gu H C, Li Y T, Zheng J, Zhong J Y, Zhang J 2022 Acta Phys. Sin. 71 155201Google Scholar

    [12]

    何民卿, 张华, 李明强, 彭力, 周沧涛 2023 物理学报 72 095201Google Scholar

    He M Q, Zhang H, Li M Q, Peng L, Zhou C T 2023 Acta Phys. Sin. 72 095201Google Scholar

    [13]

    王琛, 安红海, 熊俊, 方智恒, 季雨, 练昌旺, 谢志勇, 郭尔夫, 贺芝宇, 曹兆栋, 王伟, 闫锐, 裴文兵 2021 物理学报 70 195202Google Scholar

    Wang C, An H H, Xiong J, Fang Z H, Ji Y, Lian C W, Xie Z Y, Guo E F, He Z Y, Cao Z D, Wang W, Yan R, Pei W B 2021 Acta Phys. Sin. 70 195202Google Scholar

    [14]

    熊俊, 安红海, 王琛, 张振驰, 矫金龙, 雷安乐, 王瑞荣, 胡广月, 王伟, 孙今人 2022 物理学报 71 215201Google Scholar

    Xiong J, An H H, Wang C, Zhang Z C, Jiao J L, Lei A L, Wang R R, Hu G Y, Wang W, Sun J R 2022 Acta Phys. Sin. 71 215201Google Scholar

    [15]

    周炳琨, 高以智, 陈倜嵘, 陈家骅 2011 激光原理 (第6卷) (北京: 国防工业出版社) 第149页

    Zhou B K, Gao Y Z, Chen T R, Chen J H 2011 Principles of Laser (Vol. 6) (Beijing: National Defense Industry Press) p149

    [16]

    黄晚晴, 张颖, 孙喜博, 耿远超, 王文义, 刘兰琴 2019 激光与光电子学进展 56 121403Google Scholar

    Huang W Q, Zhang Y, Sun X B, Geng Y C, Wang W Y, Liu L Q 2019 Las. Opt. Pro. 56 121403Google Scholar

    [17]

    Manes K R, Spaeth M L, Adams J J, et al. 2015 Fus. Scienc. Techn. 69 146Google Scholar

    [18]

    温磊, 陈林, 陈伟, 胡丽丽, 吴谊群 2016 光学精密工程 24 2925Google Scholar

    Wen L, Chen L, Chen W, Hu L L, Wu Y Q 2016 Opt. Prec. Eng. 24 2925Google Scholar

    [19]

    彭志涛 景峰 刘兰琴, 朱启华, 陈波, 张昆, 刘华, 张清泉, 程晓峰, 蒋东镔, 刘红婕, 彭翰生 2003 物理学报 52 87Google Scholar

    Peng Z T, Jing F, Liu L Q, Zhu Q H, Chen B, Zhang K, Liu H, Zhang Q Q, Cheng X F, Jiang D B, Liu H J, Peng H S 2003 Acta Phys. Sin. 52 87Google Scholar

    [20]

    赵军普 2006 硕士学位论文(成都: 四川大学)

    Zhao J P 2006 M. S. Thesis (Chengdu: Sichuan University

  • 图 1  神光II升级装置主放大器结构

    Fig. 1.  Structure of the main amplifier of SGII-UP laser facility.

    图 2  装置增益性能提升前后装置10 ns方波对应的输入输出能力对比

    Fig. 2.  Comparison of input and output capability curve before and after the improvement for 10 ns pulse.

    图 3  装置增益性能提升前后5 ns和10 ns方波下的输出能力与累积B积分的关系对比

    Fig. 3.  Comparison of input and accumulated B integral curve under 5 ns and 10 ns pulse before and after the improvement.

    图 4  装置增益性能提升前后1 ns方波下的输出能力与累积B积分及级间B积分∑B的关系对比

    Fig. 4.  Comparison of input and accumulated B integral curve under 1 ns flat pulse before and after the improvement.

    图 5  典型斜角波

    Fig. 5.  Typical oblique pulse.

    图 6  改进前后高平均功率密度条件下的激光近场对比

    Fig. 6.  Comparison of the near-field with high average power density before and after improvement.

    图 7  改进前后高平均功率密度条件下的激光近场功率密度直方图 (a)第5路, 改进前, 输出能量2790 J/1 ns; (b)第5路, 改进后, 输出能量2700 J/1 ns; (c)第8路, 改进前, 输出能量2700 J/1 ns; (d)第8路, 改进后, 输出能量3238 J/1 ns

    Fig. 7.  Histogram of the near-field with high average power density before and after improvement: (a) Beam 5, before improvement, with 2790 J/1 ns output; (b) Beam 5, after improvement, with 2700 J/1 ns output; (c) Beam 8, before improvement, with 2700 J/1 ns output; (d) Beam 8, after improvement, with 3238 J/1 ns output.

    图 8  改进前后第5路近场质量分布之功率谱密度曲线

    Fig. 8.  Curve of power spectral density before and after improvement for Beam 5.

    图 9  基频12797 J/10 ns末级近场分布

    Fig. 9.  Distribution of near field of basic frequency under 12797 J/10 ns output.

    表 1  N31和N41钕玻璃参数对比

    Table 1.  Characteristics comparison of N31 and N41 Nd: glass.

    参数N31N41
    Nd3+掺杂浓度/(1020 cm–1)3.54.2
    受激发射截面/(10–20 cm–3)3.83.9
    荧光寿命/μs310310
    1053 nm非线性折射率系数/(10–13 esu)1.201.05
    1053 nm折射率1.5321.504
    密度/(g·cm–3)2.8502.596
    下载: 导出CSV

    表 2  主放大器改进前后助推放大器和腔放大器的钕玻璃构成

    Table 2.  Configuration of Nd: glass in the main amplifier.

    助推放大器的钕玻璃腔放大器的钕玻璃
    改进前5片N31308片N3122
    改进后5片N41424片N3122 + 5片N3130
    下载: 导出CSV

    表 3  改进后不同钕玻璃材料小信号增益系数模拟计算值

    Table 3.  Calculation value of small gain coefficient of different Nd: glass after improvement.

    钕玻璃材料厚度/mm增益系数/cm–1
    N4142405.24%
    N3130454.90%
    N3122454.70%
    下载: 导出CSV

    表 4  不同脉宽下的装置基频输出能力评估

    Table 4.  Estimation of output capability at different frequencies.

    配置输出能力/kJ
    10 ns 方波10 ns 斜角波5 ns 方波5 ns 斜角波3 ns 方波3 ns 斜角波1 ns 方波
    改进前8.08.08.06.57.44.473.2
    改进后12.512.511.27.38.24.83.45
    下载: 导出CSV

    表 5  升级第三路片放增益提升前后的实测数据

    Table 5.  Measurement value of output energy of SGII-UP Facility Beam 3 before and after improvement.

    发次编号 注入能量/mJ 输出能量/J 放大倍数 增益系数/cm–1
    改进前 20181022008 198.25 628.88 8175 4.10%
    20190525001 189.38 652.30 8877 4.14%
    20190525002 192.30 750.00 10052 4.21%
    改进后 20200826001 14.47 779.33 138810 5.04%
    20200826002 13.38 715.61 137844 5.04%
    下载: 导出CSV

    表 6  升级其他光路片放改进后的实测数据

    Table 6.  Output energy measurement value of other beams of SGII-UP Facility after improvement.

    光束
    编号
    注入能
    量/mJ
    输出能量/J 放大倍数 增益系
    数/cm–1
    光束
    编号
    注入能
    量/mJ
    输出能量/J 放大倍数 增益系
    数/cm–1
    1 13.9 731.8 135111 5.00% 6 28.7 985.4 101343 4.88%
    2 12.8 449.5 103428 4.89% 7 24.2 941.6 115029 4.94%
    4 13.6 492.2 106537 4.91% 8 19.5 959.0 126692 4.98%
    下载: 导出CSV

    表 7  激光近场高峰值功率密度像素点占比

    Table 7.  Percentage of pixels for peak power density of the laser near-field.

    发次编号 激光束
    编号
    > 4 GW/cm2
    像素点占比/%
    > 5 GW/cm2
    像素点占比/%
    20180123002 Beam 5 18.5 2.9
    20201009003 Beam 5 16.5 0.8
    20180123002 Beam 8 17.8 16.2
    20201009003 Beam 8 45.0 8.1
    下载: 导出CSV
  • [1]

    Haynam C A, Wegner P J, Auerbach J M, et al. 2007 B. M. Appl. Opt. 46 3276Google Scholar

    [2]

    Vivini P, Nicolaizeau M 2015 Proc. SPIE 9345 934503Google Scholar

    [3]

    高妍绮, 朱宝强, 刘代中, 彭增云, 林尊琪 2011 物理学报 60 065204Google Scholar

    Gao Y Q, Zhu B Q, Liu D Z, Peng Z Y, Lin Z Q 2011 Acta Phys. Sin. 60 065204Google Scholar

    [4]

    Touze G L, Cabourdin O, Mengue J F, Guenet M, Grebot E, Seznec S E, Jancaitis K S, Marshall C D, Zapata L E, Erlandson A E 1999 Proc. SPIE 3492 630Google Scholar

    [5]

    张华, 范滇元 2001 物理学报 50 2375Google Scholar

    Zhang H, Fan D Y 2001 Acta Phys. Sin. 50 2375Google Scholar

    [6]

    周文远, 田建国, 臧维平, 刘智波, 张春平, 张光寅 2004 物理学报 53 620Google Scholar

    Zhou W Y, Tian J G, Zang W P, Liu Z B, Zhang C P, Zhang G Y 2004 Acta Phys. Sin. 53 620Google Scholar

    [7]

    Stuart B C, Herman S, Rubenchik A M, Shore B W, Perry M D 1996 Phys. Rev. B 53 1749Google Scholar

    [8]

    Gao Y Q, Ma W X, Zhu B Q, et al. 2013 IEEE Photonics Conference Bellevue, WA, USA, September 1, 2013 p73

    [9]

    郭爱林, 朱海东, 杨泽平, 李恩德, 谢兴龙, 朱健强, 林尊琪, 马伟新, 朱俭 2013 光学学报 33 0214001Google Scholar

    Guo A L, Zhu H D, Yang Z P, Li E D, Xie X L, Zhu J Q, Lin Z Q, Ma W X, Zhu J 2013 Acta Opt. Sin. 33 0214001Google Scholar

    [10]

    田超, 单连强, 周维民, 高喆, 谷渝秋, 张保汉 2014 物理学报 63 125205Google Scholar

    Tian C, Shan L Q, Zhou W M, Gao Z, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 125205Google Scholar

    [11]

    张喆, 远晓辉, 张翌航, 刘浩, 方可, 张成龙, 刘正东, 赵旭, 董全力, 刘高扬, 戴羽, 谷昊琛, 李玉同, 郑坚, 仲佳勇, 张杰 2022 物理学报 71 155201Google Scholar

    Zhang Z, Yuan X H, Zhang Y H, Liu H, Fang K, Zhang C L, Liu Z D, Zhao X, Dong Q L, Liu G Y, Dai Y, Gu H C, Li Y T, Zheng J, Zhong J Y, Zhang J 2022 Acta Phys. Sin. 71 155201Google Scholar

    [12]

    何民卿, 张华, 李明强, 彭力, 周沧涛 2023 物理学报 72 095201Google Scholar

    He M Q, Zhang H, Li M Q, Peng L, Zhou C T 2023 Acta Phys. Sin. 72 095201Google Scholar

    [13]

    王琛, 安红海, 熊俊, 方智恒, 季雨, 练昌旺, 谢志勇, 郭尔夫, 贺芝宇, 曹兆栋, 王伟, 闫锐, 裴文兵 2021 物理学报 70 195202Google Scholar

    Wang C, An H H, Xiong J, Fang Z H, Ji Y, Lian C W, Xie Z Y, Guo E F, He Z Y, Cao Z D, Wang W, Yan R, Pei W B 2021 Acta Phys. Sin. 70 195202Google Scholar

    [14]

    熊俊, 安红海, 王琛, 张振驰, 矫金龙, 雷安乐, 王瑞荣, 胡广月, 王伟, 孙今人 2022 物理学报 71 215201Google Scholar

    Xiong J, An H H, Wang C, Zhang Z C, Jiao J L, Lei A L, Wang R R, Hu G Y, Wang W, Sun J R 2022 Acta Phys. Sin. 71 215201Google Scholar

    [15]

    周炳琨, 高以智, 陈倜嵘, 陈家骅 2011 激光原理 (第6卷) (北京: 国防工业出版社) 第149页

    Zhou B K, Gao Y Z, Chen T R, Chen J H 2011 Principles of Laser (Vol. 6) (Beijing: National Defense Industry Press) p149

    [16]

    黄晚晴, 张颖, 孙喜博, 耿远超, 王文义, 刘兰琴 2019 激光与光电子学进展 56 121403Google Scholar

    Huang W Q, Zhang Y, Sun X B, Geng Y C, Wang W Y, Liu L Q 2019 Las. Opt. Pro. 56 121403Google Scholar

    [17]

    Manes K R, Spaeth M L, Adams J J, et al. 2015 Fus. Scienc. Techn. 69 146Google Scholar

    [18]

    温磊, 陈林, 陈伟, 胡丽丽, 吴谊群 2016 光学精密工程 24 2925Google Scholar

    Wen L, Chen L, Chen W, Hu L L, Wu Y Q 2016 Opt. Prec. Eng. 24 2925Google Scholar

    [19]

    彭志涛 景峰 刘兰琴, 朱启华, 陈波, 张昆, 刘华, 张清泉, 程晓峰, 蒋东镔, 刘红婕, 彭翰生 2003 物理学报 52 87Google Scholar

    Peng Z T, Jing F, Liu L Q, Zhu Q H, Chen B, Zhang K, Liu H, Zhang Q Q, Cheng X F, Jiang D B, Liu H J, Peng H S 2003 Acta Phys. Sin. 52 87Google Scholar

    [20]

    赵军普 2006 硕士学位论文(成都: 四川大学)

    Zhao J P 2006 M. S. Thesis (Chengdu: Sichuan University

  • [1] 汤诗奕, 马梓淇, 邹云霄, 安小凯, 杨东杰, 刘亮亮, 崔岁寒, 吴忠振. 大束流阳极层离子源的阴极刻蚀现象及消除措施. 物理学报, 2024, 73(18): 185202. doi: 10.7498/aps.73.20240494
    [2] 赵卫, 付士杰, 盛泉, 薛凯, 史伟, 姚建铨. 辅助光对高功率掺镱光纤激光放大器受激拉曼散射效应的抑制作用. 物理学报, 2024, 73(20): 204201. doi: 10.7498/aps.73.20240895
    [3] 华颖鑫, 陈小辉, 李俊, 郝龙, 孙毅, 王玉峰, 耿华运. 钒的冲击熔化原位X射线衍射测量研究. 物理学报, 2022, 71(7): 076201. doi: 10.7498/aps.71.20212065
    [4] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [5] 陈小辉, 谭伯仲, 薛桃, 马云灿, 靳赛, 李志军, 辛越峰, 李晓亚, 李俊. 高压高应变率加载下多晶相变的原位X射线衍射. 物理学报, 2020, 69(24): 246201. doi: 10.7498/aps.69.20200929
    [6] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能. 物理学报, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [7] 钟勉, 杨亮, 任玮, 向霞, 刘翔, 练友运, 徐世珍, 郭德成, 郑万国, 袁晓东. 高功率脉冲电子束辐照SiO2的光学和激光损伤性能. 物理学报, 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [8] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲. 物理学报, 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [9] 蔡朝斌, 赵建林, 彭涛, 李东. 高功率激光系统中随机分布缺陷产生的"热像". 物理学报, 2011, 60(11): 114209. doi: 10.7498/aps.60.114209
    [10] 王友文, 邓剑钦, 文双春, 唐志祥, 傅喜泉, 范滇元. 宽频带光束非线性热像效应的实验研究. 物理学报, 2009, 58(3): 1738-1744. doi: 10.7498/aps.58.1738
    [11] 冯则胡, 傅喜泉, 章礼富, 徐慧文, 文双春. 超短脉冲激光空间调制下小尺度自聚焦的实验研究. 物理学报, 2008, 57(4): 2253-2259. doi: 10.7498/aps.57.2253
    [12] 王友文, 胡勇华, 文双春, 游开明, 傅喜泉. 高斯光束非线性“热像”效应研究. 物理学报, 2007, 56(10): 5855-5861. doi: 10.7498/aps.56.5855
    [13] 刘艳格, 张春书, 孙婷婷, 鲁云飞, 王 志, 袁树忠, 开桂云, 董孝义. 输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器. 物理学报, 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [14] 刘兰琴, 彭翰生, 魏晓峰, 朱启华, 黄小军, 王晓东, 周凯南, 曾小明, 王 逍, 郭 仪, 袁晓东, 彭志涛, 唐晓东. 高功率超短脉冲激光系统中用AOPDF实现增益窄化补偿的实验研究. 物理学报, 2005, 54(6): 2764-2768. doi: 10.7498/aps.54.2764
    [15] 谢良平, 赵建林, 粟敬钦, 景 峰, 王文义, 彭翰生. 位相调制产生“热像”效应理论研究. 物理学报, 2004, 53(7): 2175-2179. doi: 10.7498/aps.53.2175
    [16] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响. 物理学报, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [17] 鲁士平, 袁怿谦, 杨立书, 吴存恺. 在BBO中获得230.8—223.2nm高功率和频输出. 物理学报, 1990, 39(2): 190-193. doi: 10.7498/aps.39.190
    [18] 沈鸿元, 周玉平, 于桂芳, 黄小良, 吴彩明, 倪玉云. 热效应对高功率b轴Nd+CrNd:YAP连续激光器输出的影响. 物理学报, 1982, 31(9): 1235-1242. doi: 10.7498/aps.31.1235
    [19] 余金梁, 吴耀安, 唐元汾, 孙金梅, 冯玲英, 李金龙, 廖晶莹, 吴惠法, 徐惠德. 高功率倍频输出的铌酸钡钠晶体生长和性能. 物理学报, 1981, 30(11): 1543-1547. doi: 10.7498/aps.30.1543
    [20] 吴中祥. 激光器输出功率的粗估公式. 物理学报, 1979, 28(3): 426-429. doi: 10.7498/aps.28.426
计量
  • 文章访问数:  3290
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-20
  • 修回日期:  2023-08-18
  • 上网日期:  2023-08-19
  • 刊出日期:  2023-10-05

/

返回文章
返回