搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辅助光对高功率掺镱光纤激光放大器受激拉曼散射效应的抑制作用

赵卫 付士杰 盛泉 薛凯 史伟 姚建铨

引用本文:
Citation:

辅助光对高功率掺镱光纤激光放大器受激拉曼散射效应的抑制作用

赵卫, 付士杰, 盛泉, 薛凯, 史伟, 姚建铨
cstr: 32037.14.aps.73.20240895

Suppression effect of auxiliary laser on stimulated Raman scattering effect of high-power Yb-doped fiber laser amplifier

Zhao Wei, Fu Shi-Jie, Sheng Quan, Xue Kai, Shi Wei, Yao Jian-Quan
cstr: 32037.14.aps.73.20240895
PDF
HTML
导出引用
  • 提出一种利用辅助光调控高功率掺镱光纤放大器中增益分布, 以控制信号光的受激拉曼散射(SRS)增益、提高SRS阈值的方法. 基于数值模拟分析了辅助光的波长以及辅助光和信号光的功率比例对放大器SRS阈值的影响规律. 计算结果显示, 通过引入适当波长和功率的辅助光可以有效提升放大器的SRS阈值.
    A novel technique to suppress the stimulated Raman scattering (SRS) effect in high-power ytterbium-doped fiber amplifier is proposed and theoretically investigated by introducing an auxiliary laser to manipulate the gain distribution in the amplifier.By injecting an auxiliary laser with shorter wavelength than the signal into the amplifier, the auxiliary laser, owing to its larger stimulated emission cross-section, initially extracts a significant portion of the laser gain. At this point, the gain of the longer-wavelength signal laser is suppressed to a certain extent. As the pump power is depleted in the rear segment of the gain fiber, the amplified auxiliary laser, which has larger absorption cross-section than the signal, is gradually absorbed by the active fiber and transfers its power to the signal laser. This process enhances the gain of the long-wavelength signal laser, enabling it to be rapidly amplified at the end of the amplifier. Compared with the amplification of the singular signal laser, the introduction of an extra auxiliary laser shifts the high-gain region of the signal laser to the rear portion of the amplifier, thereby reducing the effective length and alleviating the interaction strength between the signal laser and Stokes wave, in order to obtain a higher SRS threshold.The SRS threshold of a 20 μm/400 μm fiber amplifier is investigated by using numerical simulation under different wavelengths of the auxiliary laser and different power ratios of the signal laser to auxiliary laser. The results indicate that incorporating an auxiliary laser with an appropriate wavelength and power level can significantly reduce the interaction strength between the signal and Stokes wave, thereby enhancing the SRS threshold of the amplifier efficiently. Specifically, in a 1080 nm fiber amplifier utilizing a 20 μm/400 μm ytterbium-doped large mode area fiber, if the total power of the 1080 nm signal and 1040 nm auxiliary laser is set to 200 W, while with a power ratio of 1:25, the SRS threshold increasing from 3.14 kW (singular signal laser) to 8.42 kW can be anticipated. Moreover, based on the auxiliary laser amplification technique that suppresses the SRS effect, the output power enhancement of fiber lasers with the structure of master oscillator power amplifier (MOPA) is also analyzed. This technical solution is relatively straightforward to implement and can be seamlessly integrated with other techniques aimed at reducing the SRS effect, which is promising to promote further power scaling of all-fiber amplifier.
      通信作者: 付士杰, shijie_fu@tju.edu.cn ; 史伟, shiwei@tju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB3606000)、国家自然科学基金(批准号: 62105240, 62275190, 62075159)、山东省重点研发计划(批准号: 2020CXGC010104, 2021CXGC010202)、天津大学自主创新基金(批准号: 2023XPD-0020)、中国兵器工业集团有限公司激光器件技术重点实验室开放基金(批准号: QT23120019)和泰山产业领军人才项目(批准号: tscx202312163)资助的课题.
      Corresponding author: Fu Shi-Jie, shijie_fu@tju.edu.cn ; Shi Wei, shiwei@tju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFB3606000), the National Natural Science Foundation of China (Grant Nos. 62105240, 62275190, 62075159), the Key R&D Program of Shandong Province, China (Grants Nos. 2020CXGC010104, 2021CXGC010202), the Seed Foundation of Tianjin University, China (Grant No. 2023XPD-0020), the Open Foundation of Key Laboratory of Laser Devices and Technology of China North Industries Group Co., LTD (Grant No. QT23120019), and the Taishan Industry Leading Talent Project, China (Grant No. scx202312163).
    [1]

    Jauregur C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar

    [2]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 B63Google Scholar

    [3]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [4]

    Zenteno L A, Wang J, Walton D T, Ruffin B A, Li M J 2005 Opt. Express 13 8921Google Scholar

    [5]

    Kim J, Dupriez P, Codemard C, Codemard C, Nilsson J, Sahu J K 2006 Opt. Express 14 5103Google Scholar

    [6]

    Nodop D, Jauregui C, Jansen F, Limpert, Tünnermann A 2010 Opt. Lett. 35 2982Google Scholar

    [7]

    Wang M, Zhang Y J, Wang Z F, Sun J J, Cao J Q, Leng J Y, Gu X J, Xu X J 2017 Opt. Express 25 1529Google Scholar

    [8]

    Hu Q H, Tian X, Zhao X F, Wang M, Xi X M, Wang Z F, Xu X J 2022 Opt Laser Technol. 150 107984Google Scholar

    [9]

    李昊, 陈金宝, 叶新宇, 王崇伟, 王蒙, 武柏屹, 肖虎, 陈子伦, 王泽峰 2024 中国激光 51 0215001Google Scholar

    Li H, Chen J B, Ye X Y, Wang C W, Wang M, Wu B Y, Xiao H, Chen Z L, Wang Z F 2024 Chin. J. Lasers 51 0215001Google Scholar

    [10]

    李昊, 叶新宇, 王蒙, 武柏屹, 高晨晖, 陈子伦, 王泽锋, 陈金宝 2023 光学学报 43 1714007Google Scholar

    Li H, Ye X Y, Wang M, Wu B Y, Gao C H, Chen Z L, Wang Z F, Chen J B 2023 Acta Opt. Sin. 43 1714007Google Scholar

    [11]

    Jiao K R, Shen H, Guan Z W, Yang F Y, Zhu R H 2020 Opt. Express 28 6048Google Scholar

    [12]

    Liu W, Ma P F, Lv H B, Xu J G, Zhou P, Jiang Z F 2016 Opt. Express 24 26715Google Scholar

    [13]

    Li T L, Ke W W, Ma Y, S Y H, Gao Q S 2019 J. Opt. Soc. Am. B: Opt. Phys. 36 1457Google Scholar

    [14]

    孟祥明, 杨保来, 奚小明, 王鹏, 史尘, 张汉伟, 王小林 2023 光学学报 43 1714001Google Scholar

    Meng X M, Yang B L, Xi X M, Wang P, Shi C, Zhang H W, Wang X L 2023 Acta Opt Sin 43 1714001Google Scholar

    [15]

    张春, 谢亮华, 楚秋慧, 刘玙, 黄珊, 宋华青, 吴文杰, 冯曦, 李敏, 沈本剑, 李昊坤, 陶汝茂, 许立新, 王建军 2022 强激光与粒子束 34 126Google Scholar

    Zhang C, Xie L H, Chu Q H, Liu Y, Huang S, Song H Q, Wu W J, Feng X, Li M, Shen B J, Li H K, Tao R M, Xu L X, Wang J J 2022 High Power Laser Part. Beams 34 126Google Scholar

    [16]

    Jauregui C, Limpert J, Tünnermann A 2009 Opt. Express 17 8476Google Scholar

    [17]

    Zheng J k, Zhao W, Zhao B Y, Li Z, Li G, Gao Q, Ju P, Gao W, She S F, Wu P 2018 Laser Phys. 28 105105Google Scholar

    [18]

    Ying H Y, Cao J Q, Yu Y, Wang M, Wang Z F, Chen J B 2017 Optik 144 163Google Scholar

    [19]

    罗亿, 王小林, 张汉伟, 粟荣涛, 马鹏飞, 周朴, 姜宗福 2017 物理学报 66 234206Google Scholar

    Luo Y, Wang X L, Zhang H W, Su R T, Ma P F, Zhou P, Jiang Z F 2017 Acta Physica. Sin. 66 234206Google Scholar

    [20]

    Lu Y, Han Z G, Shen H, Yan M J, Shen H, Zhu R H 2019 Proceeding of the 14th National Conference on Laser Technology and Optoelectronics Shanghai, China, March 17–20, 2019 p11170

    [21]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax H P, Heebner J E, Sider C W, Barty C P J 2008 Opt. Express 16 13240Google Scholar

    [22]

    Zhu J J, Zhou P, Ma Y X, Xu X J, Liu Z J 2011 Opt. Express 19 18645Google Scholar

    [23]

    Zervas M N 2019 Opt. Express 13 19019Google Scholar

    [24]

    Dong L, Ballato J, Kolis J 2023 Opt. Express 27 6690Google Scholar

  • 图 1  掺镱光纤放大器中激光功率分布. 未注入辅助光情况下(a)信号光、泵浦光和(b) Stokes光随光纤长度的功率演化特性; 1080 nm信号光与泵浦光功率固定不变, 额外注入200 W的1050 nm辅助光, (c) 信号光、辅助光、泵浦光和(d) Stokes光功率演化特性

    Fig. 1.  Laser power distribution in ytterbium-doped fiber amplifier. Power evolution characteristics of (a) signal, pump and (b) Stokes wave as a function of fiber length without injection of auxiliary laser; power evolution characteristics of (c) signal light, auxiliary light, pump light and (d) Stokes light when the powers of 1080 nm signal and pump light are fixed, an additional 200 W auxiliary light at 1050 nm is injected.

    图 2  辅助光波长为1050 nm时SRS效应阈值与信号/辅助光功率比的关系

    Fig. 2.  SRS threshold as a function of signal and auxiliary laser power ratio when the auxiliary laser wavelength is 1050 nm.

    图 3  不同信号/辅助光功率比下掺镱光纤放大器中激光功率分布 (a), (b) 2∶1; (c), (d) 1∶3; (e), (f) 1∶6

    Fig. 3.  Laser power distribution in ytterbium-doped fiber amplifier with different signal/auxiliary laser power ratios: (a), (b) 2∶1; (c), (d) 1∶3; (e), (f) 1∶6.

    图 4  SRS效应阈值与辅助光波长、功率占比的关系

    Fig. 4.  SRS threshold as a function of auxiliary laser wavelength and power ratio with signal laser.

    图 5  掺镱光纤放大器在不同光纤尺寸下功率输出极限, SRS: 受激拉曼散射效应; TMI: 模式不稳定效应; Pump: 泵浦亮度 (a) 未注入辅助光时功率输出极限; (b) 注入辅助光后功率输出极限

    Fig. 5.  Power scaling limit of ytterbium-doped fiber amplifiers under different fiber size. SRS: stimulated Raman scattering, TMI: transverse mode instability, Pump: pump brightness: (a) Output limit without auxiliary laser injection; (b) output limit after auxiliary laser injection.

    表 1  仿真参数

    Table 1.  Simulation parameters.

    ParameterValueParameterValue
    N0/(1025 m–3)5.2σes2/(10–25 m2)4.8
    λs1/nm1080λp/nm976
    λs2/nm1050gR/(10–13 m·W–1)0.53
    λR1/nm1132αs/m–10.003
    λR2/nm1101αp/m–10.005
    σas1/(10–27 m2)2.3αR/m–10.003
    σes1/(10–25 m2)2.8ΔλR/nm5[17]
    σas2/(10–26 m2)1.4Δλs/nm2[17]
    下载: 导出CSV
  • [1]

    Jauregur C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar

    [2]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 B63Google Scholar

    [3]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [4]

    Zenteno L A, Wang J, Walton D T, Ruffin B A, Li M J 2005 Opt. Express 13 8921Google Scholar

    [5]

    Kim J, Dupriez P, Codemard C, Codemard C, Nilsson J, Sahu J K 2006 Opt. Express 14 5103Google Scholar

    [6]

    Nodop D, Jauregui C, Jansen F, Limpert, Tünnermann A 2010 Opt. Lett. 35 2982Google Scholar

    [7]

    Wang M, Zhang Y J, Wang Z F, Sun J J, Cao J Q, Leng J Y, Gu X J, Xu X J 2017 Opt. Express 25 1529Google Scholar

    [8]

    Hu Q H, Tian X, Zhao X F, Wang M, Xi X M, Wang Z F, Xu X J 2022 Opt Laser Technol. 150 107984Google Scholar

    [9]

    李昊, 陈金宝, 叶新宇, 王崇伟, 王蒙, 武柏屹, 肖虎, 陈子伦, 王泽峰 2024 中国激光 51 0215001Google Scholar

    Li H, Chen J B, Ye X Y, Wang C W, Wang M, Wu B Y, Xiao H, Chen Z L, Wang Z F 2024 Chin. J. Lasers 51 0215001Google Scholar

    [10]

    李昊, 叶新宇, 王蒙, 武柏屹, 高晨晖, 陈子伦, 王泽锋, 陈金宝 2023 光学学报 43 1714007Google Scholar

    Li H, Ye X Y, Wang M, Wu B Y, Gao C H, Chen Z L, Wang Z F, Chen J B 2023 Acta Opt. Sin. 43 1714007Google Scholar

    [11]

    Jiao K R, Shen H, Guan Z W, Yang F Y, Zhu R H 2020 Opt. Express 28 6048Google Scholar

    [12]

    Liu W, Ma P F, Lv H B, Xu J G, Zhou P, Jiang Z F 2016 Opt. Express 24 26715Google Scholar

    [13]

    Li T L, Ke W W, Ma Y, S Y H, Gao Q S 2019 J. Opt. Soc. Am. B: Opt. Phys. 36 1457Google Scholar

    [14]

    孟祥明, 杨保来, 奚小明, 王鹏, 史尘, 张汉伟, 王小林 2023 光学学报 43 1714001Google Scholar

    Meng X M, Yang B L, Xi X M, Wang P, Shi C, Zhang H W, Wang X L 2023 Acta Opt Sin 43 1714001Google Scholar

    [15]

    张春, 谢亮华, 楚秋慧, 刘玙, 黄珊, 宋华青, 吴文杰, 冯曦, 李敏, 沈本剑, 李昊坤, 陶汝茂, 许立新, 王建军 2022 强激光与粒子束 34 126Google Scholar

    Zhang C, Xie L H, Chu Q H, Liu Y, Huang S, Song H Q, Wu W J, Feng X, Li M, Shen B J, Li H K, Tao R M, Xu L X, Wang J J 2022 High Power Laser Part. Beams 34 126Google Scholar

    [16]

    Jauregui C, Limpert J, Tünnermann A 2009 Opt. Express 17 8476Google Scholar

    [17]

    Zheng J k, Zhao W, Zhao B Y, Li Z, Li G, Gao Q, Ju P, Gao W, She S F, Wu P 2018 Laser Phys. 28 105105Google Scholar

    [18]

    Ying H Y, Cao J Q, Yu Y, Wang M, Wang Z F, Chen J B 2017 Optik 144 163Google Scholar

    [19]

    罗亿, 王小林, 张汉伟, 粟荣涛, 马鹏飞, 周朴, 姜宗福 2017 物理学报 66 234206Google Scholar

    Luo Y, Wang X L, Zhang H W, Su R T, Ma P F, Zhou P, Jiang Z F 2017 Acta Physica. Sin. 66 234206Google Scholar

    [20]

    Lu Y, Han Z G, Shen H, Yan M J, Shen H, Zhu R H 2019 Proceeding of the 14th National Conference on Laser Technology and Optoelectronics Shanghai, China, March 17–20, 2019 p11170

    [21]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax H P, Heebner J E, Sider C W, Barty C P J 2008 Opt. Express 16 13240Google Scholar

    [22]

    Zhu J J, Zhou P, Ma Y X, Xu X J, Liu Z J 2011 Opt. Express 19 18645Google Scholar

    [23]

    Zervas M N 2019 Opt. Express 13 19019Google Scholar

    [24]

    Dong L, Ballato J, Kolis J 2023 Opt. Express 27 6690Google Scholar

  • [1] 曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝. 辐照效应对于掺镱光纤放大器模式不稳定阈值影响的理论研究. 物理学报, 2024, 73(20): 204202. doi: 10.7498/aps.73.20240816
    [2] 谢静, 王利, 刘崇, 张艳丽, 刘强, 汪涛, 柴志豪, 夏志强, 杨琳, 张攀政, 朱宝强. 神光II升级激光装置基频输出能力提升. 物理学报, 2023, 72(19): 194202. doi: 10.7498/aps.72.20230643
    [3] 刘恒, 张钧翔, 付士杰, 盛泉, 史伟, 姚建铨. 有源光纤中稀土离子激光上能级寿命测量的研究. 物理学报, 2019, 68(22): 224202. doi: 10.7498/aps.68.20190616
    [4] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [5] 刘江, 刘晨, 师红星, 王璞. 342W全光纤结构窄线宽连续掺铥光纤激光器. 物理学报, 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [6] 刘江, 刘晨, 师红星, 王璞. 203W全光纤全保偏结构皮秒掺铥光纤激光器. 物理学报, 2016, 65(19): 194208. doi: 10.7498/aps.65.194208
    [7] 陶汝茂, 周朴, 王小林, 司磊, 刘泽金. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究. 物理学报, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [8] 姜曼, 肖虎, 周朴, 王小林, 刘泽金. 高功率、低量子亏损同带抽运掺镱光纤放大器. 物理学报, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [9] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究. 物理学报, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [10] 肖虎, 冷进勇, 吴武明, 王小林, 马阎星, 周朴, 许晓军, 赵国民. 同带抽运高效率光纤放大器. 物理学报, 2011, 60(12): 124207. doi: 10.7498/aps.60.124207
    [11] 王友文, 邓剑钦, 文双春, 唐志祥, 傅喜泉, 范滇元. 宽频带光束非线性热像效应的实验研究. 物理学报, 2009, 58(3): 1738-1744. doi: 10.7498/aps.58.1738
    [12] 任广军, 魏臻, 张强, 姚建铨. 掺钕保偏光纤放大器的研究. 物理学报, 2009, 58(6): 3897-3902. doi: 10.7498/aps.58.3897
    [13] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究. 物理学报, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [14] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究. 物理学报, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [15] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [16] 王友文, 胡勇华, 文双春, 游开明, 傅喜泉. 高斯光束非线性“热像”效应研究. 物理学报, 2007, 56(10): 5855-5861. doi: 10.7498/aps.56.5855
    [17] 郑 凯, 常德远, 傅永军, 魏 淮, 延凤平, 简 伟, 简水生. 掺铒孔辅助导光光纤的特性研究与优化设计. 物理学报, 2007, 56(2): 958-967. doi: 10.7498/aps.56.958
    [18] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器. 物理学报, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
    [19] 谢良平, 赵建林, 粟敬钦, 景 峰, 王文义, 彭翰生. 位相调制产生“热像”效应理论研究. 物理学报, 2004, 53(7): 2175-2179. doi: 10.7498/aps.53.2175
    [20] 季小玲, 陶向阳, 吕百达. 光束控制系统热效应与球差对激光光束质量的影响. 物理学报, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
计量
  • 文章访问数:  853
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-28
  • 修回日期:  2024-09-10
  • 上网日期:  2024-09-12
  • 刊出日期:  2024-10-20

/

返回文章
返回