-
在考虑辐致损耗的条件下, 提出了单频单模光纤放大器功率极限理论模型, 并基于该模型分析了辐致损耗对于单频单模掺镱光纤放大器功率提升的影响. 结果表明辐致损耗不仅会导致放大器功率极限的迅速下降, 还使得功率极限仅能够在特定光纤直径和光纤长度下实现. 通过解析推导功率极限表达式, 发现辐致损耗的影响与无辐照条件下的光纤最佳长度有关, 缩小无辐照条件下的光纤最佳长度可以弱化辐致损耗对于功率极限的影响. 研究还表明针对特定目标功率辐致损耗的增加, 会导致光纤直径和光纤长度的选取范围缩小; 不过, 泵浦光亮度和吸收系数的提升, 有利于拓宽光纤长度和光纤直径的取值范围, 对于辐致损耗的影响有一定的抑制效果. 本文的理论模型及研究结果对于辐照环境中单频单模光纤放大器的研究及应用具有指导意义.
Power enhancement of single-frequency single-mode Yb-doped fiber amplifiers is significant for their applications. Considering their potential applications in radiation environments, the influence of radiation-induced attenuation (RIA) on the power enhancement of signal-frequency single-mode Yb-doped fiber amplifiers is studied in this work. A theoretical model for predicting the power limitation of single-frequency single-mode Yb-doped fiber amplifiers is proposed by considering the limitations of pump brightness, stimulated Brillion scattering (SBS), and transverse mode instability (TMI) on power, and taking RIA into account. It is revealed that RIA can not only greatly lower the power limit, but also make it more difficult to achieve power limitation. The analytic formula of power limit is deduced. It is found that the effect of RIA on the power limitation is mainly determined by the optimal length with no RIA. It is suggested that the reduction of power limitation caused by RIA can be weakened by shortening the optimum length of Yb-doped fiber. The requirement of Yb-doped fiber for achieving certain target power is also discussed and the needed ranges of core diameter and fiber length are given analytically. It is found that the RIA will increase the difficulty in achieving the target power by limiting the option of Yb-doped fibers. In spite of that, it is also found that such an effect of RIA can be weakened by increasing the core absorption coefficient and pump brightness. Moreover, the numerical model and related formula can also reveal the influence of radiation dose by fitting the relationship between RIA and radiation dose through using the empirical expressions such as power law. They can provide significant guidance for designing and utilizing single-frequency single-mode Yb-doped fiber amplifiers in radiation environments. -
Keywords:
- fiber amplifier /
- radiation effect /
- transverse mode instability /
- stimulated Brillouin scattering
-
图 1 三种因素限制功率(单位: kW)随纤芯直径和光纤长度的变化, 辐致损耗分别为0 dB/m (a), 0.01 dB/m (b), 0.03 dB/m (c)和0.05 dB/m (d), 其中, 泵浦光亮度(PB), SBS和TMI限制区域分别由黄色、绿色和橙色标记. 计算得到的功率极限分别为1.47 kW (a), 1.41 kW (b), 1.30 kW (c)和1.22 kW (d). 图(a)的功率极限出现在SBS和TMI区域的交界线上, 其他三图的功率极限出现在三条交界线的交点上(由红色六角星标记). 交界线的交点坐标分别为(79.1, 2.126) (a), (77.6, 2.131) (b), (74.9, 2.142) (c), (74.6, 2.153) (d)
Fig. 1. Variations of power limits (unit: kW) with the core diameter and length of Yb-doped fiber, where the RIA values are 0 dB/m (a), 0.01 dB/m (b), 0.03 dB/m (c), and 0.05 dB/m (d), respectively. The PB-limited, SBS-limited, and TMI-limited regions are marked in yellow, green, and orange, respectively. The calculated power limits are 1.47 kW (a), 1.41 kW (b), 1.30 kW (c), and 1.22 kW (d), respectively. The power limit in (a) appears at the boundary between the SBS-limited and TMI-limited regions, while the power limit in each of the other three graphs appears at the cross point (marked by the red hexagram) of three boundary lines. The coordinates of cross points: (a) (79.1, 2.126); (b) (77.6, 2.131); (c) (74.9, 2.142); (d) (74.6, 2.153).
图 2 不同无辐照最佳光纤长度L0 opt对应的功率极限比值(a)、最佳光纤长度比值(b)和最佳纤芯直径比值(c)随辐致损耗的变化, 其中4条曲线(实线、点线、虚线和点划线)给出的是数值精确解, 4种符号(圆圈、菱形、六角星和方形)标记的是近似解析解. 图(c)中D0 opt表示无辐照最佳纤芯直径, 对应于L0 opt为1, 2, 5和10 m的D0 opt值分别为54.3 μm, 76.7 μm, 121.4 μm和171.6 μm
Fig. 2. The ratios of limited power (a), optimum fiber length (b) and optimum core diameter (c) corresponding to different optimal fiber lengths without radiation varies with RIA, where four plots (solid, dotted, dashed and dot-dash lines) give the exact numerical solutions and four symbols (circle, diamond, start and square) mark the approximate analytic solutions. D0 opt in panel (c) is the optimum core diameter with no RIA, and its value is 54.3 μm, 76.7 μm, 121.4 μm and 171.6 μm corresponding to L0 opt of 1, 2, 5 and 10 m, respectively.
-
[1] Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C P J 2018 Opt. Express 17 13240
[2] Zervas M N 2019 Opt. Express 27 19019
Google Scholar
[3] Chen M N, Huang Z H, Cao J Q, Liu A M, Wang Z F, Chen J B 2025 Opt. Commun. 577 131462
Google Scholar
[4] Zhang Z Y, Zhou X J, Sui Z, Wang J J, Li H P, Liu Y Z, Liu Y 2009 Opt. Commun. 282 1186
Google Scholar
[5] Fu S J, Shi W, Yang F, Zhang L, Yang Z M, Xu S H, Zhu X S, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 A49
Google Scholar
[6] 安毅, 潘志勇, 杨欢, 黄良金, 马鹏飞, 闫志平, 姜宗福, 周朴 2021 物理学报 70 204204
Google Scholar
An Y, Pan Z Y, Yang H, Huang L J, Ma P F, Yan Z P, Jiang Z F, Zhou P 2021 Acta Phys. Sin. 70 204204
Google Scholar
[7] Mermelstein M D 2025 Appl. Opt. 64 1179
Google Scholar
[8] Liu W B, Cao J Q, Chen J B 2019 Opt. Express 27 9164
Google Scholar
[9] Dong L 2016 Opt. Express 24 19841
Google Scholar
[10] Liu P F, Cao J Q, Liu W G, Chen J B 2024 Opt. Fiber Technol. 84 103715
Google Scholar
[11] Tao R M, Wang X L, Zhou P 2018 IEEE J. Sel. Top. Quantum Electron. 24 1
[12] Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861
Google Scholar
[13] Xia N, Yoo S 2020 J. Lightwave Technol. 38 4478
Google Scholar
[14] Cao J Q, Chen J B, Guo S F, Lu Q S, Xu X J 2014 IEEE J. Sel. Top. Quantum Electron. 20 373
Google Scholar
[15] Cao J Q, Chen M N, Huang Z H, Wang Z F, Chen J B 2024 Opt. Express 32 12892
Google Scholar
[16] Girard S, Morana A, Ladaci A, Robin T, Mescia L, Bonnefois J J, Boutillier M, Mekki J, Paveau A, Cadier B, Marin E, Ouerdane Y, Boukenter A 2018 J. Opt. 20 093001
Google Scholar
[17] Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L, Hu L L 2018 J. Phys. Chem. B 122 2809
[18] Girard S, Ouerdane Y, Tortech B, Marcandella C, Robin T, Cadier B, Baggio J, Paillet P, Ferlet-Cavrois V, Boukenter A, Meunier J P, Schwank J R, Shaneyfelt M R, Dodd P E, Blackmore E W 2009 IEEE Trans. Nucl. Sci. 56 3293
Google Scholar
[19] Chen Y S, Xu H Z, Xing Y B, Liao L, Wang Y B, Zhang F F, He X L, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2018 Opt. Express 26 20430
Google Scholar
[20] Tao M M, Chen H W, Feng G B, Luan K P, Wang F, Huang K, Ye X S 2020 Opt. Express 28 10104
Google Scholar
[21] 曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 陈金宝 2024 物理学报 73 204202
Google Scholar
Cao J Q, Zhou S D, Liu P F, Huang Z H, Wang Z F, Si L, Chen J B 2024 Acta Phys. Sin. 73 204202
Google Scholar
[22] Cao J Q, Zhou S D, Liu P F, Huang Z H, Wang Z F, Chen J B 2024 2024 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC) Beijing, China 2024 pp1–3
[23] Zervas M N 2016 Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF) Vancouver, Canada, 2016 pSoW2H. 2.
[24] Golob J E, Lyons P B and Looney L D 1977 IEEE Trans. Nucl. Sci. 24 2164
Google Scholar
[25] Shao C Y, Yu C L, Zhu Y M, Zhou Q L, Georges B, Małgorzata E G; Chen W B, Hu L L 2023 J. Lumin. 248 118939
[26] Girard S, Alessi A, Richard N, Martin-Samos L, De Michele V, Giacomazzi L, Agnello S, Di Francesca D, Morana A, Winkler B, Reghioua I, Paillet P, Cannas M, Robin T, Boukenter A, Ouerdane Y 2019 Rev. Phys. 4 100032
Google Scholar
[27] Griscom D L, Gingerich M E, Friebele E J 1994 IEEE Trans. Nucl. Sci. 41 523
Google Scholar
[28] 黄宏琪, 赵楠, 陈瑰, 廖雷, 刘自军, 彭景刚, 戴能利 2014 物理学报 63 200201
Google Scholar
Huang H Q, Zhao N, Chen G, Liao L, Liu Z J, Peng J G, Dai N L 2014 Acta Phys. Sin. 63 200201
Google Scholar
计量
- 文章访问数: 202
- PDF下载量: 5
- 被引次数: 0