搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辐致损耗对单频单模掺镱光纤放大器功率提升的影响

曹涧秋 周尚德 刘鹏飞 黄值河 马鹏飞 王泽锋 司磊 陈金宝

引用本文:
Citation:

辐致损耗对单频单模掺镱光纤放大器功率提升的影响

曹涧秋, 周尚德, 刘鹏飞, 黄值河, 马鹏飞, 王泽锋, 司磊, 陈金宝

Influence of radiation-induced loss on power enhancement of single-frequency single-mode Yb-doped fiber amplifiers

CAO Jianqiu, ZHOU Shangde, LIU Pengfei, HUANG Zhihe, MA Pengfei, WANG Zefeng, SI Lei, CHEN Jinbao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在考虑辐致损耗的条件下, 提出了单频单模光纤放大器功率极限理论模型, 并基于该模型分析了辐致损耗对于单频单模掺镱光纤放大器功率提升的影响. 结果表明辐致损耗不仅会导致放大器功率极限的迅速下降, 还使得功率极限仅能够在特定光纤直径和光纤长度下实现. 通过解析推导功率极限表达式, 发现辐致损耗的影响与无辐照条件下的光纤最佳长度有关, 缩小无辐照条件下的光纤最佳长度可以弱化辐致损耗对于功率极限的影响. 研究还表明针对特定目标功率辐致损耗的增加, 会导致光纤直径和光纤长度的选取范围缩小; 不过, 泵浦光亮度和吸收系数的提升, 有利于拓宽光纤长度和光纤直径的取值范围, 对于辐致损耗的影响有一定的抑制效果. 本文的理论模型及研究结果对于辐照环境中单频单模光纤放大器的研究及应用具有指导意义.
    Power enhancement of single-frequency single-mode Yb-doped fiber amplifiers is significant for their applications. Considering their potential applications in radiation environments, the influence of radiation-induced attenuation (RIA) on the power enhancement of signal-frequency single-mode Yb-doped fiber amplifiers is studied in this work. A theoretical model for predicting the power limitation of single-frequency single-mode Yb-doped fiber amplifiers is proposed by considering the limitations of pump brightness, stimulated Brillion scattering (SBS), and transverse mode instability (TMI) on power, and taking RIA into account. It is revealed that RIA can not only greatly lower the power limit, but also make it more difficult to achieve power limitation. The analytic formula of power limit is deduced. It is found that the effect of RIA on the power limitation is mainly determined by the optimal length with no RIA. It is suggested that the reduction of power limitation caused by RIA can be weakened by shortening the optimum length of Yb-doped fiber.The requirement of Yb-doped fiber for achieving certain target power is also discussed and the needed ranges of core diameter and fiber length are given analytically. It is found that the RIA will increase the difficulty in achieving the target power by limiting the option of Yb-doped fibers. In spite of that, it is also found that such an effect of RIA can be weakened by increasing the core absorption coefficient and pump brightness. Moreover, the numerical model and related formula can also reveal the influence of radiation dose by fitting the relationship between RIA and radiation dose through using the empirical expressions such as power law. They can provide significant guidance for designing and utilizing single-frequency single-mode Yb-doped fiber amplifiers in radiation environments.
  • 图 1  三种因素限制功率(单位: kW)随纤芯直径和光纤长度的变化, 辐致损耗分别为0 dB/m (a), 0.01 dB/m (b), 0.03 dB/m (c)和0.05 dB/m (d), 其中, 泵浦光亮度(PB), SBS和TMI限制区域分别由黄色、绿色和橙色标记. 计算得到的功率极限分别为1.47 kW (a), 1.41 kW (b), 1.30 kW (c)和1.22 kW (d). 图(a)的功率极限出现在SBS和TMI区域的交界线上, 其他三图的功率极限出现在三条交界线的交点上(由红色六角星标记). 交界线的交点坐标分别为(79.1, 2.126) (a), (77.6, 2.131) (b), (74.9, 2.142) (c), (74.6, 2.153) (d)

    Fig. 1.  Variations of power limits (unit: kW) with the core diameter and length of Yb-doped fiber, where the RIA values are 0 dB/m (a), 0.01 dB/m (b), 0.03 dB/m (c), and 0.05 dB/m (d), respectively. The PB-limited, SBS-limited, and TMI-limited regions are marked in yellow, green, and orange, respectively. The calculated power limits are 1.47 kW (a), 1.41 kW (b), 1.30 kW (c), and 1.22 kW (d), respectively. The power limit in (a) appears at the boundary between the SBS-limited and TMI-limited regions, while the power limit in each of the other three graphs appears at the cross point (marked by the red hexagram) of three boundary lines. The coordinates of cross points: (a) (79.1, 2.126); (b) (77.6, 2.131); (c) (74.9, 2.142); (d) (74.6, 2.153).

    图 2  不同无辐照最佳光纤长度L0 opt对应的功率极限比值(a)、最佳光纤长度比值(b)和最佳纤芯直径比值(c)随辐致损耗的变化, 其中4条曲线(实线、点线、虚线和点划线)给出的是数值精确解, 4种符号(圆圈、菱形、六角星和方形)标记的是近似解析解. 图(c)中D0 opt表示无辐照最佳纤芯直径, 对应于L0 opt为1, 2, 5和10 m的D0 opt值分别为54.3 μm, 76.7 μm, 121.4 μm和171.6 μm

    Fig. 2.  The ratios of limited power (a), optimum fiber length (b) and optimum core diameter (c) corresponding to different optimal fiber lengths without radiation varies with RIA, where four plots (solid, dotted, dashed and dot-dash lines) give the exact numerical solutions and four symbols (circle, diamond, start and square) mark the approximate analytic solutions. D0 opt in panel (c) is the optimum core diameter with no RIA, and its value is 54.3 μm, 76.7 μm, 121.4 μm and 171.6 μm corresponding to L0 opt of 1, 2, 5 and 10 m, respectively.

    表 1  数值计算所用的参数值[1]

    Table 1.  Symbols and values used in numerical calculation[1].

    物理量参数值物理量参数值
    gB/(×10–11 m·W–1)5A/dB20
    dn/dT /(×10–6 K–1)11.8G10
    NA0.45η00.84
    ηheat0.1Γs0.9
    Ιpump/(W·μm–2·sr–1)0.021k/(W·m–1·K–1)1.38
    λp/nm976λs/nm1080
    α976/(dB·m–1)250
    下载: 导出CSV
  • [1]

    Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C P J 2018 Opt. Express 17 13240

    [2]

    Zervas M N 2019 Opt. Express 27 19019Google Scholar

    [3]

    Chen M N, Huang Z H, Cao J Q, Liu A M, Wang Z F, Chen J B 2025 Opt. Commun. 577 131462Google Scholar

    [4]

    Zhang Z Y, Zhou X J, Sui Z, Wang J J, Li H P, Liu Y Z, Liu Y 2009 Opt. Commun. 282 1186Google Scholar

    [5]

    Fu S J, Shi W, Yang F, Zhang L, Yang Z M, Xu S H, Zhu X S, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 A49Google Scholar

    [6]

    安毅, 潘志勇, 杨欢, 黄良金, 马鹏飞, 闫志平, 姜宗福, 周朴 2021 物理学报 70 204204Google Scholar

    An Y, Pan Z Y, Yang H, Huang L J, Ma P F, Yan Z P, Jiang Z F, Zhou P 2021 Acta Phys. Sin. 70 204204Google Scholar

    [7]

    Mermelstein M D 2025 Appl. Opt. 64 1179Google Scholar

    [8]

    Liu W B, Cao J Q, Chen J B 2019 Opt. Express 27 9164Google Scholar

    [9]

    Dong L 2016 Opt. Express 24 19841Google Scholar

    [10]

    Liu P F, Cao J Q, Liu W G, Chen J B 2024 Opt. Fiber Technol. 84 103715Google Scholar

    [11]

    Tao R M, Wang X L, Zhou P 2018 IEEE J. Sel. Top. Quantum Electron. 24 1

    [12]

    Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar

    [13]

    Xia N, Yoo S 2020 J. Lightwave Technol. 38 4478Google Scholar

    [14]

    Cao J Q, Chen J B, Guo S F, Lu Q S, Xu X J 2014 IEEE J. Sel. Top. Quantum Electron. 20 373Google Scholar

    [15]

    Cao J Q, Chen M N, Huang Z H, Wang Z F, Chen J B 2024 Opt. Express 32 12892Google Scholar

    [16]

    Girard S, Morana A, Ladaci A, Robin T, Mescia L, Bonnefois J J, Boutillier M, Mekki J, Paveau A, Cadier B, Marin E, Ouerdane Y, Boukenter A 2018 J. Opt. 20 093001Google Scholar

    [17]

    Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L, Hu L L 2018 J. Phys. Chem. B 122 2809

    [18]

    Girard S, Ouerdane Y, Tortech B, Marcandella C, Robin T, Cadier B, Baggio J, Paillet P, Ferlet-Cavrois V, Boukenter A, Meunier J P, Schwank J R, Shaneyfelt M R, Dodd P E, Blackmore E W 2009 IEEE Trans. Nucl. Sci. 56 3293Google Scholar

    [19]

    Chen Y S, Xu H Z, Xing Y B, Liao L, Wang Y B, Zhang F F, He X L, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2018 Opt. Express 26 20430Google Scholar

    [20]

    Tao M M, Chen H W, Feng G B, Luan K P, Wang F, Huang K, Ye X S 2020 Opt. Express 28 10104Google Scholar

    [21]

    曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 陈金宝 2024 物理学报 73 204202Google Scholar

    Cao J Q, Zhou S D, Liu P F, Huang Z H, Wang Z F, Si L, Chen J B 2024 Acta Phys. Sin. 73 204202Google Scholar

    [22]

    Cao J Q, Zhou S D, Liu P F, Huang Z H, Wang Z F, Chen J B 2024 2024 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC) Beijing, China 2024 pp1–3

    [23]

    Zervas M N 2016 Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF) Vancouver, Canada, 2016 pSoW2H. 2.

    [24]

    Golob J E, Lyons P B and Looney L D 1977 IEEE Trans. Nucl. Sci. 24 2164Google Scholar

    [25]

    Shao C Y, Yu C L, Zhu Y M, Zhou Q L, Georges B, Małgorzata E G; Chen W B, Hu L L 2023 J. Lumin. 248 118939

    [26]

    Girard S, Alessi A, Richard N, Martin-Samos L, De Michele V, Giacomazzi L, Agnello S, Di Francesca D, Morana A, Winkler B, Reghioua I, Paillet P, Cannas M, Robin T, Boukenter A, Ouerdane Y 2019 Rev. Phys. 4 100032Google Scholar

    [27]

    Griscom D L, Gingerich M E, Friebele E J 1994 IEEE Trans. Nucl. Sci. 41 523Google Scholar

    [28]

    黄宏琪, 赵楠, 陈瑰, 廖雷, 刘自军, 彭景刚, 戴能利 2014 物理学报 63 200201Google Scholar

    Huang H Q, Zhao N, Chen G, Liao L, Liu Z J, Peng J G, Dai N L 2014 Acta Phys. Sin. 63 200201Google Scholar

  • [1] 冯云龙, 侯尚林, 雷景丽, 武刚, 晏祖勇. 声波导单模光纤中后向受激布里渊散射的声模分析. 物理学报, doi: 10.7498/aps.73.20231710
    [2] 赵卫, 付士杰, 盛泉, 薛凯, 史伟, 姚建铨. 辅助光对高功率掺镱光纤激光放大器受激拉曼散射效应的抑制作用. 物理学报, doi: 10.7498/aps.73.20240895
    [3] 曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝. 辐照效应对于掺镱光纤放大器模式不稳定阈值影响的理论研究. 物理学报, doi: 10.7498/aps.73.20240816
    [4] 薛斌韬, 张利民, 梁永齐, 刘宁, 汪定平, 陈亮, 王铁山. 质子辐照CH3NH3PbI3基钙钛矿太阳能电池的损伤效应. 物理学报, doi: 10.7498/aps.72.20222100
    [5] 李雪健, 曹敏, 汤敏, 芈月安, 陶洪, 古皓, 任文华, 简伟, 任国斌. M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性. 物理学报, doi: 10.7498/aps.69.20200103
    [6] 彭海波, 刘枫飞, 张冰焘, 张晓阳, 孙梦利, 杜鑫, 王鹏, 袁伟, 王铁山, 王建伟. Xe离子束辐照硼硅酸盐玻璃和石英玻璃效应对比研究. 物理学报, doi: 10.7498/aps.67.20172117
    [7] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬. Sm2Co17型永磁合金的辐照效应研究. 物理学报, doi: 10.7498/aps.66.226101
    [8] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, doi: 10.7498/aps.66.234203
    [9] 陶汝茂, 周朴, 王小林, 司磊, 刘泽金. 高功率全光纤结构主振荡功率放大器中模式不稳定现象的实验研究. 物理学报, doi: 10.7498/aps.63.085202
    [10] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟. 物理学报, doi: 10.7498/aps.62.184208
    [11] 郑狄, 潘炜. 非线性光纤环镜在受激布里渊散射慢光级联系统中的可行性研究. 物理学报, doi: 10.7498/aps.60.064210
    [12] 陈旭东, 石锦卫, 刘娟, 刘宝, 许艳霞, 史久林, 刘大禾. 同轴正交偏振双脉冲序列受激布里渊散射抽运放大的实现方法. 物理学报, doi: 10.7498/aps.59.1047
    [13] 金豫浙, 胡益培, 曾祥华, 杨义军. GaN基多量子阱蓝光LED的γ辐照效应. 物理学报, doi: 10.7498/aps.59.1258
    [14] 陈旭东, 石锦卫, 欧阳敏, 刘宝, 许艳霞, 史久林, 刘大禾. 光学单池中受激布里渊散射的双光束共轴放大. 物理学报, doi: 10.7498/aps.58.4680
    [15] 张林, 韩超, 马永吉, 张义门, 张玉明. Ni/4H-SiC肖特基势垒二极管的γ射线辐照效应. 物理学报, doi: 10.7498/aps.58.2737
    [16] 乔 辉, 廖 毅, 胡伟达, 邓 屹, 袁永刚, 张勤耀, 李向阳, 龚海梅. 碲镉汞焦平面光伏器件的实时γ辐照效应研究. 物理学报, doi: 10.7498/aps.57.7088
    [17] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, doi: 10.7498/aps.57.5035
    [18] 郭少锋, 林文雄, 陆启生, 陈 燧, 林宗志, 邓少永, 朱永祥. 熔融石英玻璃受激布里渊散射效应实验研究. 物理学报, doi: 10.7498/aps.56.2218
    [19] 吕志伟, 王晓慧, 林殿阳, 王 超, 赵晓彦, 汤秀章, 张海峰, 单玉生. KrF激光受激布里渊散射反射率稳定性的研究. 物理学报, doi: 10.7498/aps.52.1184
    [20] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应. 物理学报, doi: 10.7498/aps.50.2434
计量
  • 文章访问数:  202
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-01
  • 修回日期:  2025-05-03
  • 上网日期:  2025-05-10

/

返回文章
返回