-
在考虑辐致损耗的条件下,提出了单频单模光纤放大器功率极限理论模型,并基于该模型分析了辐致损耗对于单频单模掺镱光纤放大器功率提升的影响。研究结果表明:辐致损耗不仅会导致放大器功率极限的迅速下降,还使得功率极限仅能够在特定光纤直径和光纤长度下实现。通过解析推导功率极限表达式,发现:辐致损耗的影响,与无辐照条件下的光纤最佳长度有关,缩小无辐照条件下的光纤最佳长度可以弱化辐致损耗对于功率极限的影响。研究还表明:针对特定目标功率,辐致损耗的增加,会导致光纤直径和光纤长度的选取范围缩小;不过,泵浦光亮度和吸收系数的提升,有利于拓宽光纤长度和光纤直径的取值范围,对于辐致损耗的影响有一定的抑制效果。本文的理论模型及研究结果对于辐照环境中单频单模光纤放大器的研究及应用具有指导意义。Power scalability of single-frequency single-mode Yb-doped fiber amplifiers is significant for their applications. Considering their potential applications in radiation environments, the influence of radiation-induced attenuation (RIA) on the power scalability of signal-frequency single-mode Yb-doped fiber amplifiers is studied in this work.
By giving the powers limited by pump brightness, stimulated Brillion scattering (SBS) and transverse mode instability (TMI), the theoretical model predicting the power limit of single-frequency single-mode Yb-doped fiber amplifiers is presented with the consideration of RIA. It is revealed that RIA cannot only lower the power limit seriously, but can also make the achievement of power limit more difficult. The analytic formula of power limit is deduced. It is found that the effect of RIA on the power limit is mainly determined by the optimum length with no RIA. It is suggested that the reduction of power limit caused by RIA can be weakened by shortening the optimum length of Yb-doped fiber.
The requirement on Yb-doped fiber for achieving certain target power is also discussed and the needed ranges of core diameter and fiber length are given analytically. It is found that the RIA will enhance the difficulty for achieving the target power by limiting the option of Yb-doped fibers. In spite of that, it is also found that such effect of RIA can be weakened by increasing the core absorption coefficient and pump brightness.
Moreover, the numerical model and pertinent formula can also reveal the effect of radiation dose by fitting the relationship of RIA and radiation dose with the empirical expressions such as Power-law. They can provide significant guidance on the designing and applications of single-frequency single-mode Yb-doped fiber amplifiers in radiation environments.-
Keywords:
- fiber amplifier /
- radiation effect /
- transverse mode instability /
- stimulated Brillouin scattering
-
[1] Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W, Barty C P J 2018Opt. Express 1713240
[2] Zervas M N 2019 Opt. Express 27 19019
[3] Chen M N, Huang Z H, Cao J Q, Liu A M, Wang Z F, Chen J B 2025Opt. Commun. 577 131462
[4] Zhang Z Y, Zhou X J, Sui Z, Wang J J, Li H P, Liu Y Z, Liu Y 2009Opt. Commun. 282 1186
[5] Fu S J, Shi W, Yang F, Zhang L, Yang Z M, Xu S H, Zhu X S, Norwood R A, Peyghambarian N 2017J. Opt. Soc. Am. B 34 A49
[6] An Y, Pan Z Y, Yang H, Huang L J, Ma P F, Yan Z P, Jiang Z F, Zhou P 2021Acta Phys. Sin. 70 204204(in Chinese) [安毅,潘志勇,杨欢,黄良金,马鹏飞,闫志平,姜宗福,周朴2021物理学报70 204204]
[7] Mermelstein M D 2025Appl. Opt. 64 1179
[8] Liu W B, Cao J Q, Chen J B 2019Opt. Express 27 9164
[9] Dong L 2016Opt. Express 24 19841
[10] Liu P F, Cao J Q, Liu W G, Chen J B 2024Opt. Fiber Technol. 84 103715
[11] Tao R M, Wang X L, Zhou P 2018 IEEE J. Sel. Topics Quantum Electron. 24 1
[12] Jauregui C, Limpert J, Tünnermann A 2013Nat. Photonics 7 861
[13] Xia N, Yoo S 2020 J. Lightwave Technol. 38 4478
[14] Cao J Q, Chen J B, Guo S F, Lu Q S, Xu X J 2014J. Sel. Topics Quantum Electron. 20 373
[15] Cao J Q, Chen M N, Huang Z H, Wang Z F, Chen J B 2024 Opt. Express 32 12892
[16] Girard S, Morana A, Ladaci A, Robin T, Mescia L, Bonnefois J-J, Boutillier M, Mekki J, Paveau A, Cadier B, Marin E, Ouerdane Y, Boukenter A 2018 J. Opt. 20 093001
[17] Shao C Y, Ren J J, Wang F, Ollier N, Xie F H, Zhang X Y, Zhang L, Yu C L, Hu L L 2018J. Phys. Chem. B 122 2809
[18] Girard S, Ouerdane Y, Tortech B, Marcandella C, Robin T, Cadier B, Baggio J, Paillet P, Ferlet-Cavrois V, Boukenter A, Meunier J P, Schwank J R, Shaneyfelt M R, Dodd P E, Blackmore E W 2009 IEEE Trans. Nucl. Sci. 56 3293
[19] Chen Y S, Xu H Z, Xing Y B, Liao L, Wang Y B, Zhang F F, He X L, Li H Q, Peng J G, Yang L Y, Dai N L, Li J Y 2018 Opt. Express 26 20430
[20] Tao M M, Chen H W, Feng G B, Luan K P, Wang F, Huang K, Ye X S 2020 Opt. Express 28 10104
[21] Cao J Q, Zhou S D, Liu P F, Huang Z H, Wang Z F, Si L, Chen J B 2024Acta Phys. Sin. 73 204202(in Chinese) [曹涧秋,周尚德,刘鹏飞,黄值河,王泽锋,陈金宝2024物理学报73 204202]
[22] Cao J Q, Zhou S D, Liu P F, Huang Z H, Wang Z F, Chen J B 20242024 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC) Beijing, China, 2024 p1-3
[23] Zervas M N 2016Advanced Photonics 2016(IPR, NOMA, Sensors, Networks, SPPCom, SOF) Vancouver, Canada, 2016 pSoW2H.2.
[24] Golob J E, Lyons P B and Looney L D 1977IEEE Trans. Nucl. Sci. 24 2164
[25] Shao C Y, Yu C L, Zhu Y M, Zhou Q L, Georges B, Małgorzata E G; Chen W B, Hu L L 2023J. Lumin. 248 118939
[26] Girard S, Alessi A, Richard N, Martin-Samos L, De Michele V, Giacomazzi L, Agnello S, Di Francesca D, Morana A, Winkler B, Reghioua I, Paillet P, Cannas M, Robin T, Boukenter A, Ouerdane Y 2019Rev. Phys. 4 100032
[27] Griscom D L, Gingerich M E, Friebele E J 1994IEEE Trans. Nucl. Sci. 41 523
[28] Huang H Q, Zhao N, Chen G, Liao L, Liu Z J, Peng J G, Dai N L 2014Acta Phys. Sin. 63 200201(in Chinese) [黄宏琪,赵楠,陈瑰,廖雷,刘自军,彭景刚,戴能利2014物理学报63 200201]
计量
- 文章访问数: 7
- PDF下载量: 0
- 被引次数: 0