搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响

刘雅坤 王小林 粟荣涛 马鹏飞 张汉伟 周朴 司磊

引用本文:
Citation:

相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响

刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊

Effect of phase modulation on linewidth and stimulated Brillouin scattering threshold of narrow-linewidth fiber amplifiers

Liu Ya-Kun, Wang Xiao-Lin, Su Rong-Tao, Ma Peng-Fei, Zhang Han-Wei, Zhou Pu, Si Lei
PDF
导出引用
  • 高功率窄线宽光纤放大器的输出功率主要受限于受激布里渊散射(SBS)效应,通过相位调制进行线宽展宽可以有效抑制SBS效应.基于窄线宽光纤放大器中的SBS动力学模型,研究了正弦信号、白噪声信号和伪随机编码信号(PRBS)对窄线宽光纤放大器光谱特性与SBS阈值的影响.研究发现,采用不同信号进行相位调制时,调制频率和调制深度等参数对调制后激光光谱的谱线间隔、谱线数目与光谱平整度的影响存在较大差异,进而影响放大器的线宽特性和SBS阈值.通过对比分析,给出了调制信号的类型选择和参数优化原则,能够为窄线宽光纤放大器的相位调制系统设计提供参考.
    Stimulated Brillouin scattering (SBS) currently limits the power scaling of narrow-linewidth amplifiers. To date, several techniques have been employed to suppress SBS. Within these SBS suppressing techniques, the phase modulation technique is a preferable approach to obtaining kilowatt-level narrow-linewidth laser sources. In this manuscript, we numerically investigate the influence of phase modulation signals on linewidth and SBS threshold, and discuss how to choose an appropriate modulation signal for suppressing SBS with less linewidth broadening. Three types of signals are studied, including sinusoidal signal, white noise signal (WNS), and pseudo-random binary sequence signal (PRBS). Signal parameters such as modulation frequency and modulation depth are also optimized. It is found that the linewidth increases linearly with the modulation frequency, and the linewidth is largest for WNS modulation for the same modulation frequency. Specially, the linewidth is approximate to the modulation frequency for PRBS modulation. In the case of sinusoidal modulation, the spectra exhibit a series of discrete sidebands at integer multiples of the modulation frequency while the spectral power density is almost continuous for WNS modulation. In the case of PRBS modulation, the spectra contain periodic features that are distributed as a function of modulation frequency and pattern length. The SBS threshold grows to a maximum at~100 MHz modulation frequency for the case of sinusoidal signal modulation, which can be further increased by increasing the modulation depth. The SBS threshold can be further increased by implementing the cascade sinusoidal signal modulation. When WNS modulation is employed, the SBS threshold increases almost linearly with the modulation frequency and has an S-shaped increase with the modulation depth. For the PRBS modulation, the pattern length has an optimal value for SBS suppressing:the SBS threshold increases almost linearly below a frequency, but keeps stable above that frequency. The PRBSs with longer pattern lengths tend to suppress SBS more effectively in higher modulation frequency regime than those with the shorter ones. In the commonly used 1-2 GHz frequency regimes, the PRBS with a pattern length of 7 provides the best SBS mitigation, and the pattern length should be longer when the frequency is higher than 2 GHz. It should also be noted that the SBS threshold is highest when the modulation depth is close to the half-wave voltage (π). From the aspect of SBS suppression, the PRBS is superior to other two modulation signals, which can achieve higher SBS threshold with less linewidth broadening. The investigation can present a reference for the phase modulation signal designing in the power scaling of the narrow-linewidth fiber amplifiers.
      通信作者: 粟荣涛, surongtao@126.com;w_zt@163.com ; 司磊, surongtao@126.com;w_zt@163.com
    • 基金项目: 国家自然科学基金(批准号:61505260)和科技部重点研发计划(批准号:2016YFB0402200)资助的课题.
      Corresponding author: Su Rong-Tao, surongtao@126.com;w_zt@163.com ; Si Lei, surongtao@126.com;w_zt@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505260) and the National Key Research and Development Program of China (Grant No. 2016YFB0402200).
    [1]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 11

    [2]

    Andrés M V, Cruz J L, Díez A, Pérez M P, Delgado P M 2008 Laser Phys. Lett. 5 2

    [3]

    Bufetov I A, Dianov E M 2009 Laser Phys. Lett. 6 6

    [4]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photonics 2 1

    [5]

    Wei S Y, Jin D C, Sun R Y, Cao Y, Hou Y B, Wang J, Liu J, Wang P (in Chinese)[魏守宇, 金东臣, 孙若愚, 曹镱, 侯玉斌, 王静, 刘江, 王璞 2016 中国激光 43 0402005]

    [6]

    Bowers M S 2015 SPIE Defense+Security, Maryland, United States, April 20-24, 2015 p0J

    [7]

    Ran Y, Tao R M, Ma P F, Wang X L, Su R T, Zhou P, Si L 2015 Appl. Opt. 54 24

    [8]

    Liao S Y, Gong M L 2007 Laser Optoelectron. Prog. 44 6 (in Chinese)[廖素英, 巩马理 2007 激光与光电子学进展 44 6]

    [9]

    Gray S 2006 In Optical Amplifiers and Their Applications Whistler, Canada, June 25, 2006 pOSuB1

    [10]

    Naderi N A, Flores A, Anderson B M, Dajani I 2016 Opt. Lett. 41 17

    [11]

    Flores A, Dajani I 2014 Conference on Lasers and Electro-Optics California, United States, June 813, 2014 p1

    [12]

    Beier F, Hupel C, Nold J, Kuhn S, Hein S, Ihring J, Sattler B, Haarlammert N, Schreiber T, Eberhardt R, Tnnermann A 2016 Opt. Express 24 6011

    [13]

    Yu C X, Shatrovoy O, Fan T Y 2016 SPIE LASE, San Francisco, United States, March 9, 2016 p972806

    [14]

    Nold J, Strecker M, Liem A, Eberhardt R, Schreiber T, Tnnermann A 2015 European Conference on Lasers and Electro-Optics Munich, Germany, June 21-25, 2015 pCJ114

    [15]

    Anderson B, Flores A, Holten R, Dajani I 2015 Opt. Express 23 27046

    [16]

    Sun Y H, Feng Y J, Li T L, Wang Y S, Ma Y, Tang C, Zhang K (in Chinese)[孙殷宏, 冯昱骏, 李腾龙, 王岩山, 马毅, 唐淳, 张凯 2015 强激光与粒子束 27 071013]

    [17]

    Naderi N A, Dajani I, Flores A 2016 Opt. Lett. 41 1018

    [18]

    Harish A V, Nilsson J 2015 Opt. Express 23 6988

    [19]

    Zeringue C, Dajani I, Naderi S, Moore G T, Robin C 2012 Opt. Express 20 21196

    [20]

    Du W B, Wang X L, Zhu J J, Zhou P, Xu X J, Shu B H 2013 High Power Laser and Particle Beams 25 598 (in Chinese)[杜文博, 王小林, 朱家健, 周朴, 许晓军, 舒博宏 2013 强激光与粒子束 25 598]

    [21]

    Jenkins R B, Sova R M, Joseph R I 2007 J. Lightwave Technol. 25 763

    [22]

    Boyd R W, Rzaewski K, Narum P 1990 Phys. Rev. A. 42 5514

    [23]

    Mungan C E, Rogers S D, Satyan N, White J O 2012 IEEE J. Quant. Electron. 48 1542

    [24]

    Tang C K, Reed G T 1995 Electron. Lett. 31 451

    [25]

    Shimotsu S, Oikawa S, Saitou T, Mitsugi N, Kubodera K, Kawanishi T, Izutsu M 2001 IEEE Photonics Technol. Lett. 13 364

    [26]

    Xie S P, Xu G L (in Chinese)[谢淑平, 许国良 2013 光学学报 33 0206003]

    [27]

    Liu Y F 2008 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[刘英繁 2008 博士学位论文(哈尔滨:哈尔滨工业大学)]

    [28]

    Zeringue C, Dajani I, Naderi S, Moore G, Robin C 2012 Opt. Express. 20 21196

    [29]

    Salhi M, Hideur A, Chartier T, Brunel M, Martel G, Ozkul C, Sanches F 2002 Opt. Lett. 27 1294

    [30]

    Ran Y 2015 M. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[冉阳 2015 硕士学位论文(长沙:国防科学技术大学)]

    [31]

    Hollenbeck D, Cantrell C 2009 J. Lightwave Technol. 27 2140

    [32]

    Ran Y, Su R T, Ma P F, Wang X L, Zhou P, Si L 2016 Appl. Opt. 55 3809

  • [1]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 11

    [2]

    Andrés M V, Cruz J L, Díez A, Pérez M P, Delgado P M 2008 Laser Phys. Lett. 5 2

    [3]

    Bufetov I A, Dianov E M 2009 Laser Phys. Lett. 6 6

    [4]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photonics 2 1

    [5]

    Wei S Y, Jin D C, Sun R Y, Cao Y, Hou Y B, Wang J, Liu J, Wang P (in Chinese)[魏守宇, 金东臣, 孙若愚, 曹镱, 侯玉斌, 王静, 刘江, 王璞 2016 中国激光 43 0402005]

    [6]

    Bowers M S 2015 SPIE Defense+Security, Maryland, United States, April 20-24, 2015 p0J

    [7]

    Ran Y, Tao R M, Ma P F, Wang X L, Su R T, Zhou P, Si L 2015 Appl. Opt. 54 24

    [8]

    Liao S Y, Gong M L 2007 Laser Optoelectron. Prog. 44 6 (in Chinese)[廖素英, 巩马理 2007 激光与光电子学进展 44 6]

    [9]

    Gray S 2006 In Optical Amplifiers and Their Applications Whistler, Canada, June 25, 2006 pOSuB1

    [10]

    Naderi N A, Flores A, Anderson B M, Dajani I 2016 Opt. Lett. 41 17

    [11]

    Flores A, Dajani I 2014 Conference on Lasers and Electro-Optics California, United States, June 813, 2014 p1

    [12]

    Beier F, Hupel C, Nold J, Kuhn S, Hein S, Ihring J, Sattler B, Haarlammert N, Schreiber T, Eberhardt R, Tnnermann A 2016 Opt. Express 24 6011

    [13]

    Yu C X, Shatrovoy O, Fan T Y 2016 SPIE LASE, San Francisco, United States, March 9, 2016 p972806

    [14]

    Nold J, Strecker M, Liem A, Eberhardt R, Schreiber T, Tnnermann A 2015 European Conference on Lasers and Electro-Optics Munich, Germany, June 21-25, 2015 pCJ114

    [15]

    Anderson B, Flores A, Holten R, Dajani I 2015 Opt. Express 23 27046

    [16]

    Sun Y H, Feng Y J, Li T L, Wang Y S, Ma Y, Tang C, Zhang K (in Chinese)[孙殷宏, 冯昱骏, 李腾龙, 王岩山, 马毅, 唐淳, 张凯 2015 强激光与粒子束 27 071013]

    [17]

    Naderi N A, Dajani I, Flores A 2016 Opt. Lett. 41 1018

    [18]

    Harish A V, Nilsson J 2015 Opt. Express 23 6988

    [19]

    Zeringue C, Dajani I, Naderi S, Moore G T, Robin C 2012 Opt. Express 20 21196

    [20]

    Du W B, Wang X L, Zhu J J, Zhou P, Xu X J, Shu B H 2013 High Power Laser and Particle Beams 25 598 (in Chinese)[杜文博, 王小林, 朱家健, 周朴, 许晓军, 舒博宏 2013 强激光与粒子束 25 598]

    [21]

    Jenkins R B, Sova R M, Joseph R I 2007 J. Lightwave Technol. 25 763

    [22]

    Boyd R W, Rzaewski K, Narum P 1990 Phys. Rev. A. 42 5514

    [23]

    Mungan C E, Rogers S D, Satyan N, White J O 2012 IEEE J. Quant. Electron. 48 1542

    [24]

    Tang C K, Reed G T 1995 Electron. Lett. 31 451

    [25]

    Shimotsu S, Oikawa S, Saitou T, Mitsugi N, Kubodera K, Kawanishi T, Izutsu M 2001 IEEE Photonics Technol. Lett. 13 364

    [26]

    Xie S P, Xu G L (in Chinese)[谢淑平, 许国良 2013 光学学报 33 0206003]

    [27]

    Liu Y F 2008 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[刘英繁 2008 博士学位论文(哈尔滨:哈尔滨工业大学)]

    [28]

    Zeringue C, Dajani I, Naderi S, Moore G, Robin C 2012 Opt. Express. 20 21196

    [29]

    Salhi M, Hideur A, Chartier T, Brunel M, Martel G, Ozkul C, Sanches F 2002 Opt. Lett. 27 1294

    [30]

    Ran Y 2015 M. D. Dissertation (Changsha:National University of Defense Technology) (in Chinese)[冉阳 2015 硕士学位论文(长沙:国防科学技术大学)]

    [31]

    Hollenbeck D, Cantrell C 2009 J. Lightwave Technol. 27 2140

    [32]

    Ran Y, Su R T, Ma P F, Wang X L, Zhou P, Si L 2016 Appl. Opt. 55 3809

  • [1] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱. 基于阶梯相位调制的窄谱激光主动照明均匀性. 物理学报, 2021, 70(15): 154207. doi: 10.7498/aps.70.20210228
    [2] 李雪健, 曹敏, 汤敏, 芈月安, 陶洪, 古皓, 任文华, 简伟, 任国斌. M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性. 物理学报, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [3] 粟荣涛, 张鹏飞, 周朴, 肖虎, 王小林, 段磊, 吕品, 许晓军. 窄线宽纳秒脉冲光纤拉曼放大器的理论模型和数值分析. 物理学报, 2018, 67(15): 154202. doi: 10.7498/aps.67.20172679
    [4] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [5] 刘江, 刘晨, 师红星, 王璞. 342W全光纤结构窄线宽连续掺铥光纤激光器. 物理学报, 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [6] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [7] 高玮, 刘胜男, 毕雅凤, 胡晓博, 浦绍质, 赵洪. 液芯光纤中基于多线抽运调制的带宽可控平顶布里渊增益谱. 物理学报, 2013, 62(19): 194206. doi: 10.7498/aps.62.194206
    [8] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟. 物理学报, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [9] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究 . 物理学报, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [10] 张东, 张磊, 史久林, 石锦卫, 弓文平, 刘大禾. 受激布里渊散射的线宽压缩及时间相干性. 物理学报, 2012, 61(6): 064212. doi: 10.7498/aps.61.064212
    [11] 郑狄, 潘炜. 非线性光纤环镜在受激布里渊散射慢光级联系统中的可行性研究. 物理学报, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [12] 薛力芳, 张强, 李芳, 周燕, 刘育梁. 高频调制大功率窄线宽分布反馈光纤激光器. 物理学报, 2011, 60(1): 014213. doi: 10.7498/aps.60.014213
    [13] 陈旭东, 石锦卫, 刘娟, 刘宝, 许艳霞, 史久林, 刘大禾. 同轴正交偏振双脉冲序列受激布里渊散射抽运放大的实现方法. 物理学报, 2010, 59(2): 1047-1051. doi: 10.7498/aps.59.1047
    [14] 任广军, 魏臻, 张强, 姚建铨. 掺钕保偏光纤放大器的研究. 物理学报, 2009, 58(6): 3897-3902. doi: 10.7498/aps.58.3897
    [15] 陈旭东, 石锦卫, 欧阳敏, 刘宝, 许艳霞, 史久林, 刘大禾. 光学单池中受激布里渊散射的双光束共轴放大. 物理学报, 2009, 58(7): 4680-4684. doi: 10.7498/aps.58.4680
    [16] 杨若夫, 杨平, 沈锋. 基于能动分块反射镜的两路光纤放大器相位探测及其相干合成实验研究. 物理学报, 2009, 58(12): 8297-8301. doi: 10.7498/aps.58.8297
    [17] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究. 物理学报, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [18] 汪 莎, 陈 军, 童立新, 高清松, 刘 崇, 唐 淳. 熔石英棒-光纤构成的新型复合相位共轭镜的实验和理论研究. 物理学报, 2008, 57(3): 1719-1724. doi: 10.7498/aps.57.1719
    [19] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [20] 王雨雷, 吕志伟, 何伟明, 张 祎. 一种大能量受激布里渊散射相位共轭镜的研究. 物理学报, 2007, 56(2): 883-888. doi: 10.7498/aps.56.883
计量
  • 文章访问数:  4232
  • PDF下载量:  287
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-22
  • 修回日期:  2017-07-07
  • 刊出日期:  2017-12-05

相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响

    基金项目: 国家自然科学基金(批准号:61505260)和科技部重点研发计划(批准号:2016YFB0402200)资助的课题.

摘要: 高功率窄线宽光纤放大器的输出功率主要受限于受激布里渊散射(SBS)效应,通过相位调制进行线宽展宽可以有效抑制SBS效应.基于窄线宽光纤放大器中的SBS动力学模型,研究了正弦信号、白噪声信号和伪随机编码信号(PRBS)对窄线宽光纤放大器光谱特性与SBS阈值的影响.研究发现,采用不同信号进行相位调制时,调制频率和调制深度等参数对调制后激光光谱的谱线间隔、谱线数目与光谱平整度的影响存在较大差异,进而影响放大器的线宽特性和SBS阈值.通过对比分析,给出了调制信号的类型选择和参数优化原则,能够为窄线宽光纤放大器的相位调制系统设计提供参考.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回