搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

窄线宽纳秒脉冲光纤拉曼放大器的理论模型和数值分析

粟荣涛 张鹏飞 周朴 肖虎 王小林 段磊 吕品 许晓军

引用本文:
Citation:

窄线宽纳秒脉冲光纤拉曼放大器的理论模型和数值分析

粟荣涛, 张鹏飞, 周朴, 肖虎, 王小林, 段磊, 吕品, 许晓军

Theoretical and numerical study on narrow-linewidth nanosecond pulsed Raman fiber amplifier

Su Rong-Tao, Zhang Peng-Fei, Zhou Pu, Xiao Hu, Wang Xiao-Lin, Duan Lei, Lü Pin, Xu Xiao-Jun
PDF
导出引用
  • 窄线宽纳秒脉冲光纤拉曼放大器在非线性频率变换、遥感探测和量子信息等领域有广泛的应用前景.综合考虑受激拉曼散射(stimulated Raman scattering,SRS)、受激布里渊散射(stimulated Brillouin scattering,SBS)、自相位调制(self-phase modulation)和交叉相位调制(cross-phase modulation)等非线性效应,建立了窄线宽纳秒脉冲光纤拉曼放大器的非线性动力学模型.仿真分析了放大器中脉冲激光的时频演化特性,对比研究了抽运脉冲宽度、光纤长度和信号光功率等因素对放大器性能的影响.研究发现,上述因素会影响放大器的SRS阈值、SBS阈值、输出激光线宽、激光转换效率等.例如,当脉冲宽度为800 ns时,SBS随着抽运功率的增加而发生,限制了激光功率的提升;减短抽运脉宽可以抑制SBS,但是输出激光的线宽易于展宽到数百MHz以上;增加光纤长度可以获得更低的SRS阈值和更高的转换效率,但是SBS效应和光谱展宽程度也随之增强.系统搭建中需要平衡各非线性效应,选择合适的系统参数.研究内容可以为窄线宽纳秒脉冲光纤拉曼放大器的设计搭建提供参考.
    Narrow-linewidth nanosecond pulsed Raman fiber amplifiers possess many applications such as in nonlinear frequency generation, remote sensing and quantum information. By considering nonlinear effects such as stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), self-phase modulation (SPM) and cross-phase modulation (XPM), we build a nonlinear dynamical model of narrow-linewidth nanosecond pulsed Raman fiber amplifier. A numerical simulation model is also built and the simulation is carried out based on the parallelizable bidirectional finite difference time-domain method. The pulse evolution processes in time and spectral domain are simulated. The influences of pump pulse width, fiber length and signal laser power are studied in detail. It is found that SRS peak power threshold is not influenced by pump pulse width, however, pump pulse width will affect SBS threshold and output linewidth. When the pump pulse width is 800 ns, tens of MHz narrow linewidth can be obtained, but the SBS occurs as the increasing of pump energy, which limits the power scaling of the narrow-linewidth laser pulses. When the pump pulse width is 80 ns, the SBS is effectively suppressed and the peak power can be further increased, but the linewidth of output laser is easily broadened to hundreds of MHz. The simulation results also show that lower SRS threshold and higher efficiency can be obtained by using longer passive fiber, however, if shorter passive fiber is used, SPM and XPM can be weakened and narrower linewidth can be obtained. We build an experimental setup to study the influence of fiber length. In our experiment, a polarization-maintained passive fiber with a core diameter of 10 m and core numerical aperture of 0.08 is used as the Raman gain fiber. The signal laser is a 1120 nm single frequency continuous wave fiber laser with an average power of 20 mW, and the pump laser is a 1064 nm pulsed laser with a pulse width of~40 ns and repetition rate of 500 kHz. When the fiber lengths are 100 m and 80 m, the efficiencies of the pulsed Raman amplifier are, respectively, 51.5% and 38.2% at a pump power of 6.8 W. It can also be found that increasing signal power can increase the efficiency of the amplifier, but it will reduce the SBS threshold at the same time. Therefore, in order to balance the different nonlinear effects in the arrow-linewidth nanosecond pulsed Raman fiber amplifier, we should take laser power, linewidth and efficiency into consideration, and choose the suitable system parameters such as pump pulse width, fiber length and signal power. These analyses can serve as design guidelines for narrow-linewidth nanosecond pulsed fiber Raman amplifiers.
      通信作者: 粟荣涛, surongtao@126.com
    • 基金项目: 国家自然科学基金(批准号:61705265,61705264)、中国博士后科学基金(批准号:2017M620070)和国家重点研发计划(批准号:2017YFF0104603,2016YFB0402204)资助的课题.
      Corresponding author: Su Rong-Tao, surongtao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61705265, 61705264), the China Postdoctoral Science Foundation (Grant No. 2017M620070), and the National Key RD Program of China (Grant Nos. 2017YFF0104603, 2016YFB0402204).
    [1]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554

    [2]

    Zheng Y, Yang Y, Wang J, Hu M, Liu G, Zhao X, Chen X, Liu K, Zhao C, He B, Zhou J 2016 Opt. Express 24 12063

    [3]

    Yan P, Sun J, Li D, Wang X, Huang Y, Gong M, Xiao Q 2016 Opt. Express 24 19940

    [4]

    Fu S, Shi W, Feng Y, Zhang L, Yang Z, Xu S, Zhu X, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B 34 A49

    [5]

    Xu S, Li C, Zhang W, Mo S, Yang C, Wei X, Feng Z, Qian Q, Shen S, Peng M, Zhang Q, Yang Z 2013 Opt. Lett. 38 501

    [6]

    Zhang L M, Zhou S H, Zhao H, Zhang K, Hao J P, Zhang D Y, Zhu C, Li Y, Wang X F, Zhang H B 2014 Acta Phys. Sin. 63 134205 (in Chinese) [张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬 2014 物理学报 63 134205]

    [7]

    Huang Z, Liang X, Li C, Lin H, Li Q, Wang J, Jing F 2016 Appl. Opt. 55 297

    [8]

    Carlson C G, Dragic P D, Price R K, Coleman J J, Swenson G R 2009 IEEE J. Sel. Top. Quantum Electron. 15 451

    [9]

    Feng Y, Huang S, Shirakawa A, Ueda K 2004 Jpn. J. Appl. Phys. 43 722

    [10]

    Agrawal G P 2013 Nonlinear Fiber Optics (Fifth Edition) (New York: Academic) pp296-297

    [11]

    Dajani I, Vergien C, Robin C, Ward B 2013 Opt. Express 21 12038

    [12]

    Zhang L, Hu J, Wang J, Feng Y 2012 Opt. Lett. 37 4796

    [13]

    Zhang L, Cui S, Liu C, Zhou J, Feng Y 2013 Opt. Express 21 5456

    [14]

    Boggio J M C, Marconi J D, Fragnito H L 2005 IEEE J. Lightwave Technol. 23 3808

    [15]

    Qi Y F, Liu C, Zhou J, Chen W B, Dong J X, Wei Y R, Lou Q H 2010 Acta Phys. Sin. 59 3942 (in Chinese) [漆云凤, 刘驰, 周军, 陈卫标, 董景星, 魏运荣, 楼祺洪 2010 物理学报 59 3942]

    [16]

    Theeg T, Sayinc H, Neumann J, Kracht D 2012 IEEE Photon. Technol. Lett. 24 1864

    [17]

    Feng Y, Taylor L R, Calia D B, Holzlner R, Hackenberg W 2009 Frontiers in Optics San Jose, October 18-22, 2009 PDPA4

    [18]

    Su R T, Zhou P, Xiao H, Wang X L, Ma Y X, Si L, Xu X J 2012 Chinese Patent CN 102931574B (in Chinese) [粟荣涛, 周朴, 肖虎, 王小林, 马阎星, 司磊, 许晓军 2012 中国 发明专利 CN 102931574B]

    [19]

    Su R T, Zhou P, Wang X L, L H, Xu X J 2014 J. Opt. 16 015201

    [20]

    Runcorn T H, Murray R T, Kelleher E J, Popov S V, Taylor J R 2015 Opt. Lett. 40 3085

    [21]

    Vergien C, Dajani I, Zeringue C 2010 Opt. Express 18 26214

    [22]

    Zhang L, Jiang H, Cui S, Feng Y 2014 Opt. Lett. 39 1933

    [23]

    Boyd R W, Rzyzewski K, Narum P 1990 Phys. Rev. A 42 5514

  • [1]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554

    [2]

    Zheng Y, Yang Y, Wang J, Hu M, Liu G, Zhao X, Chen X, Liu K, Zhao C, He B, Zhou J 2016 Opt. Express 24 12063

    [3]

    Yan P, Sun J, Li D, Wang X, Huang Y, Gong M, Xiao Q 2016 Opt. Express 24 19940

    [4]

    Fu S, Shi W, Feng Y, Zhang L, Yang Z, Xu S, Zhu X, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B 34 A49

    [5]

    Xu S, Li C, Zhang W, Mo S, Yang C, Wei X, Feng Z, Qian Q, Shen S, Peng M, Zhang Q, Yang Z 2013 Opt. Lett. 38 501

    [6]

    Zhang L M, Zhou S H, Zhao H, Zhang K, Hao J P, Zhang D Y, Zhu C, Li Y, Wang X F, Zhang H B 2014 Acta Phys. Sin. 63 134205 (in Chinese) [张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬 2014 物理学报 63 134205]

    [7]

    Huang Z, Liang X, Li C, Lin H, Li Q, Wang J, Jing F 2016 Appl. Opt. 55 297

    [8]

    Carlson C G, Dragic P D, Price R K, Coleman J J, Swenson G R 2009 IEEE J. Sel. Top. Quantum Electron. 15 451

    [9]

    Feng Y, Huang S, Shirakawa A, Ueda K 2004 Jpn. J. Appl. Phys. 43 722

    [10]

    Agrawal G P 2013 Nonlinear Fiber Optics (Fifth Edition) (New York: Academic) pp296-297

    [11]

    Dajani I, Vergien C, Robin C, Ward B 2013 Opt. Express 21 12038

    [12]

    Zhang L, Hu J, Wang J, Feng Y 2012 Opt. Lett. 37 4796

    [13]

    Zhang L, Cui S, Liu C, Zhou J, Feng Y 2013 Opt. Express 21 5456

    [14]

    Boggio J M C, Marconi J D, Fragnito H L 2005 IEEE J. Lightwave Technol. 23 3808

    [15]

    Qi Y F, Liu C, Zhou J, Chen W B, Dong J X, Wei Y R, Lou Q H 2010 Acta Phys. Sin. 59 3942 (in Chinese) [漆云凤, 刘驰, 周军, 陈卫标, 董景星, 魏运荣, 楼祺洪 2010 物理学报 59 3942]

    [16]

    Theeg T, Sayinc H, Neumann J, Kracht D 2012 IEEE Photon. Technol. Lett. 24 1864

    [17]

    Feng Y, Taylor L R, Calia D B, Holzlner R, Hackenberg W 2009 Frontiers in Optics San Jose, October 18-22, 2009 PDPA4

    [18]

    Su R T, Zhou P, Xiao H, Wang X L, Ma Y X, Si L, Xu X J 2012 Chinese Patent CN 102931574B (in Chinese) [粟荣涛, 周朴, 肖虎, 王小林, 马阎星, 司磊, 许晓军 2012 中国 发明专利 CN 102931574B]

    [19]

    Su R T, Zhou P, Wang X L, L H, Xu X J 2014 J. Opt. 16 015201

    [20]

    Runcorn T H, Murray R T, Kelleher E J, Popov S V, Taylor J R 2015 Opt. Lett. 40 3085

    [21]

    Vergien C, Dajani I, Zeringue C 2010 Opt. Express 18 26214

    [22]

    Zhang L, Jiang H, Cui S, Feng Y 2014 Opt. Lett. 39 1933

    [23]

    Boyd R W, Rzyzewski K, Narum P 1990 Phys. Rev. A 42 5514

  • [1] 冯云龙, 侯尚林, 雷景丽, 武刚, 晏祖勇. 声波导单模光纤中后向受激布里渊散射的声模分析. 物理学报, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [2] 刘庆康, 张旭, 蔡洪波, 张恩浩, 高妍琦, 朱少平. 强度调制宽带激光对受激拉曼散射动理学爆发的抑制. 物理学报, 2024, 73(5): 055202. doi: 10.7498/aps.73.20231679
    [3] 龙欣宇, 王佩佩, 安红海, 熊俊, 谢志勇, 方智恒, 孙今人, 王琛. 宽带激光辐照平面薄膜靶的近前向散射. 物理学报, 2024, 73(12): 125202. doi: 10.7498/aps.73.20231613
    [4] 李雪健, 曹敏, 汤敏, 芈月安, 陶洪, 古皓, 任文华, 简伟, 任国斌. M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性. 物理学报, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [5] 史久林, 许锦, 罗宁宁, 王庆, 张余宝, 张巍巍, 何兴道. 水中受激拉曼散射的能量增强及受激布里渊散射的光学抑制. 物理学报, 2019, 68(4): 044201. doi: 10.7498/aps.68.20181548
    [6] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [7] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [8] 汪胜晗, 李占龙, 孙成林, 里佐威, 门志伟. 激光诱导等离子体对水OH伸缩振动受激拉曼散射的影响. 物理学报, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [9] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟. 物理学报, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [10] 刘占军, 郝亮, 项江, 郑春阳. 激光聚变中受激布里渊散射的混合模拟研究. 物理学报, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [11] 郑狄, 潘炜. 非线性光纤环镜在受激布里渊散射慢光级联系统中的可行性研究. 物理学报, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [12] 张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰. 激光等离子体相互作用的受激拉曼散射饱和效应. 物理学报, 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [13] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [14] 邓 莉, 孙真荣, 林位株, 文锦辉. 亚10 fs激光脉冲产生中的受激拉曼散射与四波混频效应. 物理学报, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [15] 刘 娟, 白建辉, 倪 恺, 景红梅, 何兴道, 刘大禾. 受激布里渊散射对激光在水中衰减特性的影响. 物理学报, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [16] 梁慧敏, 杜惊雷, 王宏波, 王治华, 罗时荣, 杨经国, 郑万国, 魏晓峰, 朱启华, 黄晓军, 王晓东, 郭 仪. 不同波长激光激发下C6H12受激拉曼散射模式竞争. 物理学报, 2007, 56(12): 6994-6998. doi: 10.7498/aps.56.6994
    [17] 普小云, 杨 睿, 王亚丽, 陈天江, 江 楠. 用染料激光增益降低二元混合物中少量化合物的受激拉曼散射可探测浓度. 物理学报, 2004, 53(8): 2509-2514. doi: 10.7498/aps.53.2509
    [18] 吕志伟, 王晓慧, 林殿阳, 王 超, 赵晓彦, 汤秀章, 张海峰, 单玉生. KrF激光受激布里渊散射反射率稳定性的研究. 物理学报, 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
    [19] 普小云, 杨 正, 江 楠, 陈永康, 戴 宏. 用激光增益获取弱增益拉曼模式的受激拉曼散射光谱. 物理学报, 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
    [20] 张喜和, 王兆民, 万春明. 光纤-氮系统的受激拉曼散射. 物理学报, 2002, 51(6): 1251-1255. doi: 10.7498/aps.51.1251
计量
  • 文章访问数:  7039
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-18
  • 修回日期:  2018-02-24
  • 刊出日期:  2018-08-05

/

返回文章
返回