搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽带激光辐照平面薄膜靶的近前向散射

龙欣宇 王佩佩 安红海 熊俊 谢志勇 方智恒 孙今人 王琛

引用本文:
Citation:

宽带激光辐照平面薄膜靶的近前向散射

龙欣宇, 王佩佩, 安红海, 熊俊, 谢志勇, 方智恒, 孙今人, 王琛

Near forward scattering light of planar film target driven by broadband laser

Long Xin-Yu, Wang Pei-Pei, An Hong-Hai, Xiong Jun, Xie Zhi-Yong, Fang Zhi-Heng, Sun Jin-Ren, Wang Chen
PDF
HTML
导出引用
  • 激光等离子体相互作用(LPI)过程一直以来是惯性约束聚变(ICF)点火中重要的研究内容, 宽带激光在理论上一直以来被认为具有抑制LPI的潜力. 宽带二倍频激光装置—“昆吾”, 为实验研究宽带激光LPI效果提供了可靠的实验研究平台. 针对大尺度低密度等离子体的LPI过程中强烈的受激布里渊散射和受激拉曼散射信号, 开展了相同条件下宽带和窄带激光驱动C8H8平面薄膜靶的透过激光、前向散射和大角度近前向散射的实验研究. 主要针对宽带和窄带激光前向透过信号的组分和近前向散射的光谱及份额信息进行对比研究, 发现宽带和窄带激光驱动的LPI过程具有显著差异. 同时, 初步结果显示宽带激光相比于窄带激光体现出更强的穿透能力, 烧蚀靶并穿过等离子体的时间提前了近1 ns, 透过能量提升了近10倍, 穿透等离子体后有更小的空间发散角. 这些结果对于更好地理解宽带激光对于LPI的作用效果具有很好的参考价值.
    Laser plasma interaction (LPI) has always been an important research topic in the ignition phase of inertial confinement fusion (ICF). Over the years, researchers have attempted to use various laser beam smoothing schemes and optimized light source solutions to suppress the development of LPI. Among them, low-coherence laser drivers have attracted widespread attention in the fields of laser-plasma physics and laser technology in recent years. Recently, a broadband second harmonic laser facility named “Kunwu” has provided a reliable experimental research platform for the LPI process driven by broadband lasers. Aiming at the strong stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) in the LPI process of large-scale low-density plasma, forward scattering experiment and near-forward scattering experiment on C8H8 planar film targets driven by broadband laser and narrowband laser under the same conditions are carried out. Based on the “Kunwu” laser facility, two sets of measurement systems are designed, one is centered around fiber-heads and spectrometer, and the other around phototubes and oscilloscope. These systems enable multi-directional precise measurements of scattered lightand a comprehensive analysis of LPI. The main focus is on the comparison of the components and spectral information of the scattering beams between broadband laser and narrowband laser, and it is found that the LPI processes driven by broadband laser and narrowband laser are greatly different. Additionally, preliminary results indicate that broadband laser exhibits a stronger penetration capability than narrowband laser. The time to ablation the target and penetrate the plasma are both nearly 1 ns ahead, with the transmitted energy increased by nearly an order of magnitude. And after penetrating the plasma, there is a smaller spatial divergence angle. These results provide good reference value for better understanding the effect of broadband laser on LPI.
      通信作者: 孙今人, sunjinren@263.net ; 王琛, wangch@mail.shcnc.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12074353, 12075227)资助的课题.
      Corresponding author: Sun Jin-Ren, sunjinren@263.net ; Wang Chen, wangch@mail.shcnc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074353, 12075227).
    [1]

    吴钟书, 赵耀, 翁苏明, 陈民, 盛政明 2019 物理学报 68 195202Google Scholar

    Wu Charles F, Zhao Y, Weng S M, Chen M, Sheng Z M 2019 Acta Phys. Sin. 68 195202Google Scholar

    [2]

    Seaton A, Arber T 2020 Phys. Plasmas 27 082704Google Scholar

    [3]

    Myatt J, Zhang J, Short R, Maximov A, Seka W, Froula D, Edgell D, Michel D, Igumenshchev I, Hinkel D 2014 Phys. Plasmas 21 055501Google Scholar

    [4]

    Pak A, Divol L, Kritcher A, Ma T, Ralph J, Bachmann B, Benedetti L, Casey D, Celliers P, Dewald E 2017 Phys. Plasmas 24 056306Google Scholar

    [5]

    Lushnikov P M, Rose H A 2006 Plasma Phys. Controlled Fusion 48 1501Google Scholar

    [6]

    Edwards M, Patel P, Lindl J, Atherton L, Glenzer S, Haan S, Kilkenny J, Landen O, Moses E, Nikroo A 2013 Phys. Plasmas 20 070501Google Scholar

    [7]

    Turnbull D, Michel P, Ralph J, Divol L, Ross J, Hopkins L B, Kritcher A, Hinkel D, Moody J 2015 Phys. Rev. Lett. 114 125001Google Scholar

    [8]

    Li C, Dong L, Feng J, Huang Y, Sun H 2020 Rev. Sci Instrum. 91 026105Google Scholar

    [9]

    Froula D, Divol L, London R, Berger R, Döppner T, Meezan N, Ross J, Suter L, Sorce C, Glenzer S 2009 Phys. Rev. Lett. 103 045006Google Scholar

    [10]

    Niemann C, Berger R, Divol L, Kirkwood R, Moody J, Sorce C, Glenzer S 2011 J. Instrum. 6 P10008Google Scholar

    [11]

    Ruyer C, Debayle A, Loiseau P, Masson-Laborde P, Fuchs J, Casanova M, Marquès J, Romagnani L, Antici P, Bourgeois N 2021 Phys. Plasmas 28 052701Google Scholar

    [12]

    Michel P, Rosenberg M, Seka W, Solodov A, Short R, Chapman T, Goyon C, Lemos N, Hohenberger M, Moody J 2019 Phys. Rev. E 99 033203Google Scholar

    [13]

    余诗瀚, 李晓锋, 翁苏明, 赵耀, 马行行, 陈民, 盛政明 2021 强激光与粒子束 33 012006Google Scholar

    Yu S H, Li X F, Weng S M, Zhao Y, Ma H H, Chen M, Sheng Z M 2021 High Power Laser Part. Beams 33 012006Google Scholar

    [14]

    Duluc M, Penninckx D, Loiseau P, Riazuelo G, Bourgeade A, Chatagnier A, d'Humières E 2019 Phys. Plasmas 26 42707Google Scholar

    [15]

    Sarri G, Cecchetti C, Jung R, Hobbs P, James S, Lockyear J, Stevenson R, Doria D, Hoarty D, Willi O 2011 Phys. Rev. Lett. 106 095001Google Scholar

    [16]

    杨冬, 李志超, 李三伟, 郝亮, 李欣, 郭亮, 邹士阳, 蒋小华, 彭晓世, 徐涛, 理玉龙, 郑春阳, 蔡洪波, 刘占军, 郑坚, 龙韬, 王哲斌, 黎航, 况龙钰, 李琦, 王峰, 刘慎业, 杨家敏, 江少恩, 张保汉, 丁永坤 2018 中国科学: 物理学, 力学, 天文学 48 065203Google Scholar

    Yang D, Li Z C, Li S W, Hao L, Li X, Guo L, Zou S Y, Jiang X H, Peng X S, Xu T, Li Y L, Zheng C Y, Cai H B, Liu Z J, Zheng J, Long T, Wang Z B, Li H, Kuang Y L, Li Q, Wang F, Liu S Y, Yang J M, Jiang S E, Zhang B H, Ding Y K 2018 Sci. Sin-Phys. Mech. Astron. 48 065203Google Scholar

    [17]

    赵耀, 郑君, 於陆勒, 陈民, 翁苏明, 盛政明 2015 中国科学: 物理学, 力学, 天文学 45 035201Google Scholar

    Zhao Y, Zheng J, Yu L Q, Chen M, Weng S M, Sheng Z M 2015 Sci. Sin-Phys. Mech. Astron. 45 035201Google Scholar

    [18]

    Zhao Y, Weng S, Chen M, Zheng J, Zhuo H, Ren C, Sheng Z, Zhang J 2017 Phys. Plasmas 24 112102Google Scholar

    [19]

    Zhao Y, Weng S, Sheng Z, Zhu J 2019 Plasma Phys. Controlled Fusion 61 115008Google Scholar

    [20]

    Zhou H, Xiao C, Zou D, Li X, Yin Y, Shao F, Zhuo H 2018 Phys. Plasmas 25 062703Google Scholar

    [21]

    Bates J, Follett R, Shaw J, Obenschain S, Myatt J, Weaver J, Wolford M, Kehne D, Myers M, Kessler T 2023 Phys. Plasmas 30 052703Google Scholar

    [22]

    刘庆康, 张旭, 蔡洪波, 张恩浩, 高妍琦, 朱少平 2024 物理学报 73 055202Google Scholar

    Liu Q K, Zhang X, Cai H B, Zhang E H, Gao Y Q, Zhu S P 2024 Acta Phys. Sin. 73 055202Google Scholar

    [23]

    Gao Y, Cui Y, Ji L, Rao D, Zhao X, Li F, Liu D, Feng W, Xia L, Liu J 2020 Matter Radiat. Extremes 5 065201Google Scholar

    [24]

    Wang P P, An H H, Fang Z H, Xiong J, Xie Z Y, Wang C, He Z Y, Jia G, Wang R R, Zheng S, Xia L, Feng W, Shi H T, Wang W, Sun J R, Gao Y Q, Fu S Z 2024 Matter Radiat. Extremes 9 015602Google Scholar

    [25]

    Lei A, Kang N, Zhao Y, Liu H, An H, Xiong J, Wang R, Xie Z, Tu Y, Xu G, Zhou X, Fang Z, Wang W, Xia L, Feng W, Zhao X, Ji L, Cui Y, Zhou S, Liu Z, Zheng C, Wang L, Gao Y, Huang X, Fu S 2024 Phys. Rev. Lett. 132 035102Google Scholar

    [26]

    Rosenberg M, Hernandez J, Butler N, Filkins T, Bahr R, Jungquist R, Bedzyk M, Swadling G, Ross J, Michel P 2021 Rev. Sci Instrum. 92 033511Google Scholar

    [27]

    Moody J, Williams E, Glenzer S, Young P, Hawreliak J, Gouveia A, Wark J 2003 Phys. Rev. Lett. 90 245001Google Scholar

    [28]

    Froula D, Divol L, Meezan N, Dixit S, Neumayer P, Moody J, Pollock B, Ross J, Suter L, Glenzer S 2007 Phys. Plasmas 14 055705Google Scholar

    [29]

    Moody J, MacGowan B, Glenzer S, Kirkwood R, Kruer W, Montgomery D, Schmitt A, Williams E, Stone G 2000 Phys. Plasmas 7 2114Google Scholar

  • 图 1  实验方案示意图

    Fig. 1.  Sketch of the experimental setup.

    图 2  靶室内部探测器结构示意图

    Fig. 2.  Schematic diagram of the detector inside target chamber.

    图 3  通过漫反射板系统测量的前向光信号积分光谱

    Fig. 3.  Integrated spectrum of forward light measured by diffuse reflector system.

    图 4  前向透过激光能量的时间特性

    Fig. 4.  Temporal characteristics of transmitted light.

    图 5  位于20°位置的L2探测器测量得到的大角度近前向散射积分光谱

    Fig. 5.  Integrated spectrum of large-angle near-forward scattering light measured by L2 detector located at 20°.

    图 6  窄带与宽带激光驱动条件下不同角度的大角度近前向散射能量份额 (a) SBS; (b) SRS

    Fig. 6.  Share of large-angle near-forward scattering light at different angles driven by boardband and narrowband laser: (a) SBS signals; (b) SRS signals.

    图 7  近前向散射能量与透过激光能量的比值 (a) SBS; (b) SRS

    Fig. 7.  Ratio of near-forward scattering energy to transmitted laser energy: (a) SBS signals; (b) SRS signals.

    图 8  透过激光的能量弥散示意图

    Fig. 8.  Schematic diagram of transmitted beam spray.

    表 1  驱动10 μm厚C8H8靶的透过激光能量

    Table 1.  Transmitted laser energy driving a 10 μm thick C8H8 target.

    序号 带宽 激光
    能量/J
    卡计
    能量/J
    标定后
    能量/J
    透过能量
    百分比/%
    1 宽带 680 172.8 138.6 20.4
    2 宽带 685 152.0 121.9 17.8
    3 窄带 694 16.9 13.3 1.9
    4 窄带 694 13.7 10.8 1.6
    5 窄带 608 13.1 10.3 1.7
    下载: 导出CSV
  • [1]

    吴钟书, 赵耀, 翁苏明, 陈民, 盛政明 2019 物理学报 68 195202Google Scholar

    Wu Charles F, Zhao Y, Weng S M, Chen M, Sheng Z M 2019 Acta Phys. Sin. 68 195202Google Scholar

    [2]

    Seaton A, Arber T 2020 Phys. Plasmas 27 082704Google Scholar

    [3]

    Myatt J, Zhang J, Short R, Maximov A, Seka W, Froula D, Edgell D, Michel D, Igumenshchev I, Hinkel D 2014 Phys. Plasmas 21 055501Google Scholar

    [4]

    Pak A, Divol L, Kritcher A, Ma T, Ralph J, Bachmann B, Benedetti L, Casey D, Celliers P, Dewald E 2017 Phys. Plasmas 24 056306Google Scholar

    [5]

    Lushnikov P M, Rose H A 2006 Plasma Phys. Controlled Fusion 48 1501Google Scholar

    [6]

    Edwards M, Patel P, Lindl J, Atherton L, Glenzer S, Haan S, Kilkenny J, Landen O, Moses E, Nikroo A 2013 Phys. Plasmas 20 070501Google Scholar

    [7]

    Turnbull D, Michel P, Ralph J, Divol L, Ross J, Hopkins L B, Kritcher A, Hinkel D, Moody J 2015 Phys. Rev. Lett. 114 125001Google Scholar

    [8]

    Li C, Dong L, Feng J, Huang Y, Sun H 2020 Rev. Sci Instrum. 91 026105Google Scholar

    [9]

    Froula D, Divol L, London R, Berger R, Döppner T, Meezan N, Ross J, Suter L, Sorce C, Glenzer S 2009 Phys. Rev. Lett. 103 045006Google Scholar

    [10]

    Niemann C, Berger R, Divol L, Kirkwood R, Moody J, Sorce C, Glenzer S 2011 J. Instrum. 6 P10008Google Scholar

    [11]

    Ruyer C, Debayle A, Loiseau P, Masson-Laborde P, Fuchs J, Casanova M, Marquès J, Romagnani L, Antici P, Bourgeois N 2021 Phys. Plasmas 28 052701Google Scholar

    [12]

    Michel P, Rosenberg M, Seka W, Solodov A, Short R, Chapman T, Goyon C, Lemos N, Hohenberger M, Moody J 2019 Phys. Rev. E 99 033203Google Scholar

    [13]

    余诗瀚, 李晓锋, 翁苏明, 赵耀, 马行行, 陈民, 盛政明 2021 强激光与粒子束 33 012006Google Scholar

    Yu S H, Li X F, Weng S M, Zhao Y, Ma H H, Chen M, Sheng Z M 2021 High Power Laser Part. Beams 33 012006Google Scholar

    [14]

    Duluc M, Penninckx D, Loiseau P, Riazuelo G, Bourgeade A, Chatagnier A, d'Humières E 2019 Phys. Plasmas 26 42707Google Scholar

    [15]

    Sarri G, Cecchetti C, Jung R, Hobbs P, James S, Lockyear J, Stevenson R, Doria D, Hoarty D, Willi O 2011 Phys. Rev. Lett. 106 095001Google Scholar

    [16]

    杨冬, 李志超, 李三伟, 郝亮, 李欣, 郭亮, 邹士阳, 蒋小华, 彭晓世, 徐涛, 理玉龙, 郑春阳, 蔡洪波, 刘占军, 郑坚, 龙韬, 王哲斌, 黎航, 况龙钰, 李琦, 王峰, 刘慎业, 杨家敏, 江少恩, 张保汉, 丁永坤 2018 中国科学: 物理学, 力学, 天文学 48 065203Google Scholar

    Yang D, Li Z C, Li S W, Hao L, Li X, Guo L, Zou S Y, Jiang X H, Peng X S, Xu T, Li Y L, Zheng C Y, Cai H B, Liu Z J, Zheng J, Long T, Wang Z B, Li H, Kuang Y L, Li Q, Wang F, Liu S Y, Yang J M, Jiang S E, Zhang B H, Ding Y K 2018 Sci. Sin-Phys. Mech. Astron. 48 065203Google Scholar

    [17]

    赵耀, 郑君, 於陆勒, 陈民, 翁苏明, 盛政明 2015 中国科学: 物理学, 力学, 天文学 45 035201Google Scholar

    Zhao Y, Zheng J, Yu L Q, Chen M, Weng S M, Sheng Z M 2015 Sci. Sin-Phys. Mech. Astron. 45 035201Google Scholar

    [18]

    Zhao Y, Weng S, Chen M, Zheng J, Zhuo H, Ren C, Sheng Z, Zhang J 2017 Phys. Plasmas 24 112102Google Scholar

    [19]

    Zhao Y, Weng S, Sheng Z, Zhu J 2019 Plasma Phys. Controlled Fusion 61 115008Google Scholar

    [20]

    Zhou H, Xiao C, Zou D, Li X, Yin Y, Shao F, Zhuo H 2018 Phys. Plasmas 25 062703Google Scholar

    [21]

    Bates J, Follett R, Shaw J, Obenschain S, Myatt J, Weaver J, Wolford M, Kehne D, Myers M, Kessler T 2023 Phys. Plasmas 30 052703Google Scholar

    [22]

    刘庆康, 张旭, 蔡洪波, 张恩浩, 高妍琦, 朱少平 2024 物理学报 73 055202Google Scholar

    Liu Q K, Zhang X, Cai H B, Zhang E H, Gao Y Q, Zhu S P 2024 Acta Phys. Sin. 73 055202Google Scholar

    [23]

    Gao Y, Cui Y, Ji L, Rao D, Zhao X, Li F, Liu D, Feng W, Xia L, Liu J 2020 Matter Radiat. Extremes 5 065201Google Scholar

    [24]

    Wang P P, An H H, Fang Z H, Xiong J, Xie Z Y, Wang C, He Z Y, Jia G, Wang R R, Zheng S, Xia L, Feng W, Shi H T, Wang W, Sun J R, Gao Y Q, Fu S Z 2024 Matter Radiat. Extremes 9 015602Google Scholar

    [25]

    Lei A, Kang N, Zhao Y, Liu H, An H, Xiong J, Wang R, Xie Z, Tu Y, Xu G, Zhou X, Fang Z, Wang W, Xia L, Feng W, Zhao X, Ji L, Cui Y, Zhou S, Liu Z, Zheng C, Wang L, Gao Y, Huang X, Fu S 2024 Phys. Rev. Lett. 132 035102Google Scholar

    [26]

    Rosenberg M, Hernandez J, Butler N, Filkins T, Bahr R, Jungquist R, Bedzyk M, Swadling G, Ross J, Michel P 2021 Rev. Sci Instrum. 92 033511Google Scholar

    [27]

    Moody J, Williams E, Glenzer S, Young P, Hawreliak J, Gouveia A, Wark J 2003 Phys. Rev. Lett. 90 245001Google Scholar

    [28]

    Froula D, Divol L, Meezan N, Dixit S, Neumayer P, Moody J, Pollock B, Ross J, Suter L, Glenzer S 2007 Phys. Plasmas 14 055705Google Scholar

    [29]

    Moody J, MacGowan B, Glenzer S, Kirkwood R, Kruer W, Montgomery D, Schmitt A, Williams E, Stone G 2000 Phys. Plasmas 7 2114Google Scholar

  • [1] 刘庆康, 张旭, 蔡洪波, 张恩浩, 高妍琦, 朱少平. 强度调制宽带激光对受激拉曼散射动理学爆发的抑制. 物理学报, 2024, 73(5): 055202. doi: 10.7498/aps.73.20231679
    [2] 王琛, 安红海, 熊俊, 方智恒, 季雨, 练昌旺, 谢志勇, 郭尔夫, 贺芝宇, 曹兆栋, 王伟, 闫锐, 裴文兵. 皮秒激光驱动下的背向受激布里渊散射的光谱结构. 物理学报, 2021, 70(19): 195202. doi: 10.7498/aps.70.20210568
    [3] 吴钟书, 赵耀, 翁苏明, 陈民, 盛政明. 非均匀等离子体中1/4临界密度附近受激散射的非线性演化. 物理学报, 2019, 68(19): 195202. doi: 10.7498/aps.68.20190883
    [4] 史久林, 许锦, 罗宁宁, 王庆, 张余宝, 张巍巍, 何兴道. 水中受激拉曼散射的能量增强及受激布里渊散射的光学抑制. 物理学报, 2019, 68(4): 044201. doi: 10.7498/aps.68.20181548
    [5] 汪胜晗, 李占龙, 孙成林, 里佐威, 门志伟. 激光诱导等离子体对水OH伸缩振动受激拉曼散射的影响. 物理学报, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [6] 李占龙, 王一丁, 周密, 门志伟, 孙成林, 里佐威. 水的低频受激拉曼散射. 物理学报, 2012, 61(6): 064217. doi: 10.7498/aps.61.064217
    [7] 孟祥富, 王琛, 安红海, 贾果, 方智恒, 周华珍, 孙今人, 王伟, 傅思祖. 驱动激光束间相干性以及对背向散射影响的研究. 物理学报, 2012, 61(18): 185202. doi: 10.7498/aps.61.185202
    [8] 刘占军, 郝亮, 项江, 郑春阳. 激光聚变中受激布里渊散射的混合模拟研究. 物理学报, 2012, 61(11): 115202. doi: 10.7498/aps.61.115202
    [9] 刘兰琴, 莫磊, 罗斌, 粟敬钦, 王文义, 王方, 景峰, 魏晓峰. 混合加宽的宽带钕玻璃激光系统的放大特性研究. 物理学报, 2009, 58(6): 4307-4312. doi: 10.7498/aps.58.4307
    [10] 张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰. 激光等离子体相互作用的受激拉曼散射饱和效应. 物理学报, 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [11] 邓 莉, 孙真荣, 林位株, 文锦辉. 亚10 fs激光脉冲产生中的受激拉曼散射与四波混频效应. 物理学报, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [12] 刘 娟, 白建辉, 倪 恺, 景红梅, 何兴道, 刘大禾. 受激布里渊散射对激光在水中衰减特性的影响. 物理学报, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [13] 哈斯乌力吉, 吕志伟, 滕云鹏, 刘述杰, 李 强, 何伟明. 受激布里渊散射光脉冲波形的研究. 物理学报, 2007, 56(2): 878-882. doi: 10.7498/aps.56.878
    [14] 刘兰琴, 粟敬钦, 罗 斌, 王文义, 景 峰, 魏晓峰. 基于混合加宽的宽带激光脉冲放大的物理模型. 物理学报, 2007, 56(11): 6749-6753. doi: 10.7498/aps.56.6749
    [15] 梁慧敏, 杜惊雷, 王宏波, 王治华, 罗时荣, 杨经国, 郑万国, 魏晓峰, 朱启华, 黄晓军, 王晓东, 郭 仪. 不同波长激光激发下C6H12受激拉曼散射模式竞争. 物理学报, 2007, 56(12): 6994-6998. doi: 10.7498/aps.56.6994
    [16] 邓少永, 郭少锋, 陆启生, 程湘爱. 抽运光参数对受激布里渊散射的影响. 物理学报, 2005, 54(7): 3164-3172. doi: 10.7498/aps.54.3164
    [17] 普小云, 杨 睿, 王亚丽, 陈天江, 江 楠. 用染料激光增益降低二元混合物中少量化合物的受激拉曼散射可探测浓度. 物理学报, 2004, 53(8): 2509-2514. doi: 10.7498/aps.53.2509
    [18] 吕志伟, 王晓慧, 林殿阳, 王 超, 赵晓彦, 汤秀章, 张海峰, 单玉生. KrF激光受激布里渊散射反射率稳定性的研究. 物理学报, 2003, 52(5): 1184-1189. doi: 10.7498/aps.52.1184
    [19] 普小云, 杨 正, 江 楠, 陈永康, 戴 宏. 用激光增益获取弱增益拉曼模式的受激拉曼散射光谱. 物理学报, 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
    [20] 张喜和, 王兆民, 万春明. 光纤-氮系统的受激拉曼散射. 物理学报, 2002, 51(6): 1251-1255. doi: 10.7498/aps.51.1251
计量
  • 文章访问数:  1310
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-07
  • 修回日期:  2024-03-27
  • 上网日期:  2024-05-08
  • 刊出日期:  2024-06-20

/

返回文章
返回