搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽带激光辐照平面薄膜靶的近前向散射研究

龙欣宇 王佩佩 安红海 熊俊 谢志勇 方智恒 孙今人 王琛

引用本文:
Citation:

宽带激光辐照平面薄膜靶的近前向散射研究

龙欣宇, 王佩佩, 安红海, 熊俊, 谢志勇, 方智恒, 孙今人, 王琛

Study on near forward scattering light of planar film target driven by broadband laser

Long Xin-Yu, Wang Pei-Pei, An Hong-Hai, Xiong Jun, Xie Zhi-Yong, Fang Zhi-Heng, Sun Jin-Ren, Wang Chen
PDF
导出引用
  • 激光等离子体相互作用(LPI)过程一直以来是惯性约束聚变(ICF)点火中重要的研究内容,宽带激光在理论上一直以来被认为具有抑制LPI的潜力。宽带二倍频激光装置—“昆吾”,为实验研究宽带激光LPI效果提供了可靠的实验研究平台。针对大尺度低密度等离子体的LPI过程中强烈的受激布里渊散射(SBS)和受激拉曼散射(SRS)信号,开展了相同条件下宽带和窄带激光驱动C8H8平面薄膜靶的透过激光、前向散射和大角度近前向散射的实验研究。主要针对宽带和窄带激光前向透过信号的组分和近前向散射的光谱及份额信息进行对比研究,发现宽带和窄带激光驱动的LPI过程具有显著差异。同时,初步结果显示宽带激光相比于窄带激光体现出更强的穿透能力,烧蚀靶并穿过等离子体的时间提前了近1ns,透过能量提升了近10倍,穿透等离子体后有更小的空间发散角。这些结果对于更好地理解宽带激光对于LPI的作用效果具有很好的参考价值。
    Laser plasma interaction (LPI) have always been a crucial research topic in the ignition phase of inertial confinement fusion (ICF). Over the years, researchers have attempted to use various laser beam smoothing schemes and optimized light source solutions to suppress the development of LPI. Among these, low-coherence laser drivers have recently attracted widespread attention in the fields of laser-plasma physics and laser technology. Recently, a broadband second harmonic laser facility named "Kunwu" has provided a reliable experimental research platform for the LPI process driven by broadband lasers. Aiming at the strong stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) in the LPI process of large-scale low-density plasma, forward scattering and near-forward scattering experiments of C8H8planar film targets driven by broadband and narrowband lasers under the same conditions were carried out. Based on the "Kunwu" laser facility, two sets of measurement systems have been designed, one centered around fiber-heads and spectrometer, and the other around phototubes and oscilloscope. These systems enable multi-directional precise measurements of scattered light, allowing for a comprehensive analysis of LPI. The main focus is on the comparison of the components and spectral information of the scattering beams for broadband and narrowband lasers, and it is found that the LPI processes driven by broadband and narrowband lasers have significant differences. Additionally, preliminary results indicate that broadband lasers exhibit a stronger penetration capability compared to narrowband lasers. The time to ablation the target and penetrate the plasma were nearly 1 ns ahead, with the transmitted energy increased by nearly an order of magnitude. And after penetrating the plasma, there was a smaller spatial divergence angle. These results have good reference value for better understanding the effect of broadband lasers on LPI.
  • [1]

    Wu Charles F, Zhao Y, Weng S, Chen M, Sheng Z 2019 Acta Phys. Sin. 68 161 (in Chinese)[吴钟书, 赵耀, 翁苏明, 陈民, 盛政明 2019 物理学报 68 161]

    [2]

    Seaton A, Arber T 2020 Phys. Plasmas 27 082704

    [3]

    Myatt J, Zhang J, Short R, Maximov A, Seka W, Froula D, Edgell D, Michel D, Igumenshchev I, Hinkel D 2014 Phys. Plasmas 21 055501

    [4]

    Pak A, Divol L, Kritcher A, Ma T, Ralph J, Bachmann B, Benedetti L, Casey D, Celliers P, Dewald E 2017 Phys. Plasmas 24 056306

    [5]

    Lushnikov P M, Rose H A 2006 Plasma Phys. Control. Fusion 48 1501

    [6]

    Edwards M, Patel P, Lindl J, Atherton L, Glenzer S, Haan S, Kilkenny J, Landen O, Moses E, Nikroo A 2013 Phys. Plasmas 20 070501

    [7]

    Turnbull D, Michel P, Ralph J, Divol L, Ross J, Hopkins L B, Kritcher A, Hinkel D, Moody J 2015 Phys. Rev. L 114 125001

    [8]

    Li C, Dong L, Feng J, Huang Y, Sun H 2020 Rev. Sci Instrum 91 026105

    [9]

    Froula D, Divol L, London R, Berger R, Döppner T, Meezan N, Ross J, Suter L, Sorce C, Glenzer S 2009 Phys. Rev. L 103 045006

    [10]

    Niemann C, Berger R, Divol L, Kirkwood R, Moody J, Sorce C, Glenzer S 2011 J. Instrum 6 P10008

    [11]

    Ruyer C, Debayle A, Loiseau P, Masson-Laborde P, Fuchs J, Casanova M, Marquès J, Romagnani L, Antici P, Bourgeois N 2021 Phys. Plasmas 28 052701

    [12]

    Michel P, Rosenberg M, Seka W, Solodov A, Short R, Chapman T, Goyon C, Lemos N, Hohenberger M, Moody J 2019 Phys. Rev. E 99 033203

    [13]

    Yu S, Li X, Weng S, Zhao Y, Ma H, Chen M, Sheng Z 2021 High Power Laser Part. Beams 33 112 (in Chinese)[余诗瀚, 李晓锋, 翁苏明, 赵耀, 马行行, 陈民, 盛政明 2020 强激光与粒子束 33 112]

    [14]

    Duluc M, Penninckx D, Loiseau P, Riazuelo G, Bourgeade A, Chatagnier A, d'Humières E 2019 Phys. Plasmas 26 42707

    [15]

    Sarri G, Cecchetti C, Jung R, Hobbs P, James S, Lockyear J, Stevenson R, Doria D, Hoarty D, Willi O 2011 Phys. Rev. L 106 095001

    [16]

    Yang D, Li Z, Li S, Hao L, Li X, Guo L, Zou S, Jiang X, Peng X, Xu T 2018 Sci. Sin-Phys. Mech. AS 48 25 (in Chinese)[杨冬, 李志超, 李三伟, 郝亮, 李欣, 郭亮, 邹士阳, 蒋小华, 彭晓世, 徐涛 2018 中国科学: 物理学, 力学, 天文学 48 25]

    [17]

    Zhao Y, Zheng J, Yu L, Chen M, Weng S, Sheng Z 2015 Sci. Sin-Phys. Mech. AS 45 64 (in Chinese)[赵耀, 郑君, 於陆勒, 陈民, 翁苏明, 盛政明 2015 中国科学: 物理学, 力学, 天文学 45 64]

    [18]

    Zhao Y, Weng S, Chen M, Zheng J, Zhuo H, Ren C, Sheng Z, Zhang J 2017 Phys. Plasmas 24 112102

    [19]

    Zhao Y, Weng S, Sheng Z, Zhu J 2019 Plasma Phys. Control. Fusion 61 115008

    [20]

    Zhou H, Xiao C, Zou D, Li X, Yin Y, Shao F, Zhuo H 2018 Phys. Plasmas 25 062703

    [21]

    Bates J, Follett R, Shaw J, Obenschain S, Myatt J, Weaver J, Wolford M, Kehne D, Myers M, Kessler T 2023 Phys. Plasmas 30 052703

    [22]

    Liu Q, Zhang X, Cai H, Zhang E, Gao Y, Zhu S 2024 Acta Phys. Sin.73 055202 (in Chinese)[刘庆康, 张旭, 蔡洪波, 张恩浩, 高妍琦, 朱少平 2024 物理学报 73 055202]

    [23]

    Gao Y, Cui Y, Ji L, Rao D, Zhao X, Li F, Liu D, Feng W, Xia L, Liu J 2020 Matter Radiat. Extrem. 5 065201

    [24]

    Wang P P, An H H, Fang Z H, Xiong J, Xie Z Y, Wang C, He Z Y, Jia G, Wang R R, Zheng S, Xia L, Feng W, Shi H T, Wang W, Sun J R, Gao Y Q, Fu S Z 2024 Matter Radiat. Extrem. 9 015602

    [25]

    Lei A, Kang N, Zhao Y, Liu H, An H, Xiong J, Wang R, Xie Z, Tu Y, Xu G, Zhou X, Fang Z, Wang W, Xia L, Feng W, Zhao X, Ji L, Cui Y, Zhou S, Liu Z, Zheng C, Wang L, Gao Y, Huang X, Fu S 2024 Phys. Rev. L 132 035102

    [26]

    Rosenberg M, Hernandez J, Butler N, Filkins T, Bahr R, Jungquist R, Bedzyk M, Swadling G, Ross J, Michel P 2021 Rev. Sci Instrum 92 033511

    [27]

    Moody J, Williams E, Glenzer S, Young P, Hawreliak J, Gouveia A, Wark J 2003 Phys. Rev. L 90 245001

    [28]

    Froula D, Divol L, Meezan N, Dixit S, Neumayer P, Moody J, Pollock B, Ross J, Suter L, Glenzer S 2007 Phys. Plasmas 14 055705

    [29]

    Moody J, MacGowan B, Glenzer S, Kirkwood R, Kruer W, Montgomery D, Schmitt A, Williams E, Stone G 2000 Phys. Plasmas 7 2114

  • [1] 刘庆康, 张旭, 蔡洪波, 张恩浩, 高妍琦, 朱少平. 强度调制宽带激光对受激拉曼散射动理学爆发的抑制. 物理学报, doi: 10.7498/aps.73.20231679
    [2] 王琛, 安红海, 熊俊, 方智恒, 季雨, 练昌旺, 谢志勇, 郭尔夫, 贺芝宇, 曹兆栋, 王伟, 闫锐, 裴文兵. 皮秒激光驱动下的背向受激布里渊散射的光谱结构. 物理学报, doi: 10.7498/aps.70.20210568
    [3] 黄衍堂, 彭隆祥, 庄世坚, 李强龙, 廖廷俤, 许灿华, 段亚凡. 掺钕微球的受激辐射激光和自受激拉曼散射. 物理学报, doi: 10.7498/aps.66.244208
    [4] 汪胜晗, 李占龙, 孙成林, 里佐威, 门志伟. 激光诱导等离子体对水OH伸缩振动受激拉曼散射的影响. 物理学报, doi: 10.7498/aps.63.205204
    [5] 袁强, 魏晓峰, 张小民, 张鑫, 赵军普, 黄文会, 胡东霞. 基于受激布里渊散射能量转移的冲击点火激光技术研究. 物理学报, doi: 10.7498/aps.61.114207
    [6] 刘占军, 郝亮, 项江, 郑春阳. 激光聚变中受激布里渊散射的混合模拟研究. 物理学报, doi: 10.7498/aps.61.115202
    [7] 项江, 郑春阳, 刘占军. 激光等离子体受激散射的线性理论研究. 物理学报, doi: 10.7498/aps.59.8717
    [8] 张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰. 激光等离子体相互作用的受激拉曼散射饱和效应. 物理学报, doi: 10.7498/aps.58.1833
    [9] 刘兰琴, 莫磊, 罗斌, 粟敬钦, 王文义, 王方, 景峰, 魏晓峰. 混合加宽的宽带钕玻璃激光系统的放大特性研究. 物理学报, doi: 10.7498/aps.58.4307
    [10] 刘 娟, 白建辉, 倪 恺, 景红梅, 何兴道, 刘大禾. 受激布里渊散射对激光在水中衰减特性的影响. 物理学报, doi: 10.7498/aps.57.260
    [11] 哈斯乌力吉, 吕志伟, 公 胜, 何伟明, 林殿阳, 张 伟. 受激布里渊散射新介质——全氟胺的研究. 物理学报, doi: 10.7498/aps.57.6360
    [12] 李百文, 田恩科. 强激光与等离子体相互作用中受激陷俘电子声波散射及相空间离子涡旋的形成. 物理学报, doi: 10.7498/aps.56.4749
    [13] 刘 维, 樊荣伟, 李晓晖, 陈 辉, 夏元钦, 陈德应. 小分子改性的聚合物固体染料激光特性研究. 物理学报, doi: 10.7498/aps.56.5276
    [14] 刘兰琴, 粟敬钦, 罗 斌, 王文义, 景 峰, 魏晓峰. 基于混合加宽的宽带激光脉冲放大的物理模型. 物理学报, doi: 10.7498/aps.56.6749
    [15] 李百文, 郑春阳, 宋 敏, 刘占军. 高强度激光与等离子体相互作用中的受激Raman级联散射、光子凝聚以及大振幅电磁孤立子的产生与加速. 物理学报, doi: 10.7498/aps.55.5325
    [16] 王晓慧, 吕志伟, 林殿阳, 王 超, 汤秀章, 龚 坤, 单玉生. 宽带KrF激光抽运的受激布里渊散射反射率研究. 物理学报, doi: 10.7498/aps.55.1224
    [17] 王杰, 姚建铨, 于意仲, 王鹏, 张帆, 王涛. 基于混频效应的宽带激光谐波转换理论. 物理学报, doi: 10.7498/aps.50.1092
    [18] 张家泰, 许林宝, 常铁强, 张书贵, 聂小波, 王世红, 汪卫星. 激光靶等离子体受激Raman散射. 物理学报, doi: 10.7498/aps.40.1642
    [19] 徐至展, 唐永红, 钱爱娣. 激光等离子体受激布里渊散射光谱的周期性结构——前向散射的间接证据. 物理学报, doi: 10.7498/aps.37.557
    [20] 徐至展, 殷光裕, 张燕珍, 林康春. 激光等离子体相互作用中的受激布里渊散射. 物理学报, doi: 10.7498/aps.32.481
计量
  • 文章访问数:  111
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-08

/

返回文章
返回