搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽带激光辐照平面厚靶的侧向散射

龙欣宇 熊俊 安红海 谢志勇 王佩佩 方智恒 王伟 孙今人 王琛

引用本文:
Citation:

宽带激光辐照平面厚靶的侧向散射

龙欣宇, 熊俊, 安红海, 谢志勇, 王佩佩, 方智恒, 王伟, 孙今人, 王琛

Study on near forward scattering light of planar film target driven by broadband laser

Long Xin-Yu, Wang Pei-Pei, An Hong-Hai, Xiong Jun, Fang Zhi-Heng, Sun Jin-Ren, Wang Chen,
PDF
导出引用
  • 激光等离子体不稳定性( LPI)是惯性约束聚变( ICF)点火过程中的关键问题之一, 多年来受到了广泛的关注。其中, 宽带激光被认为是解决 LPI 问题的一个有效途径,并且目前已经有了大量的模拟研究和少量背向、近前向散射的实验研究, 但是仍然需要侧向散射的实验研究作为补充。因此, 基于输出达到数百焦耳的宽带二倍频激光装置—“昆吾”,本文针对宽带激光与传统窄带激光与驱动平面厚靶产生的等离子体不稳定性的侧向散射以及超热电子产额设计实验。实验结果表明, 功率密度为 1×1015W·cm-2 的宽带激光激发的侧向受激布里渊散射( SBS) 与侧向受激拉曼散射( SRS) 在不同角度下的光谱和份额与窄带激光存在显著差异。进一步分析发现, 宽带条件下侧向的超热电子份额整体要高于窄带, 而此时宽带条件下小角度近前向、小角度近背向的 SRS 份额却远低于窄带,初步的定性分析认为此时 SRS 可能不是超热电子的主要产生机制, 认为此时可能是 PDI 对超热电子的产生起了主导作用。
    Laser-plasma instability (LPI) is one of the key issues in the ignition process of inertial confinement fusion (ICF), and extensive theoretical, simulation, and experimental research has been conducted over the years. Broadband laser, due to its low temporal coherence, can reduce the effective electric field strength when interacting with plasma and disrupt the phase-matching conditions of LPI, thus considered an effective approach to solving LPI issues. Current extensive simulation studies indicate that broadband laser can suppress the generation of phenomena such as Stimulated Brillouin Scattering (SBS), Stimulated Raman Scattering (SRS), and Two-Plasmon Decay (TPD) to some extent. There are also a few backward scattering experimental studies, but more experimental research such as side-scattering is still needed. Therefore, based on the broadband second harmonic laser facility “Kunwu”, this paper designs experiments for the lateral scattering of critical density plasma driven by broadband and traditional narrowband lasers, as well as the production of hot electrons. The experimental results show that the side SBS and side SRS spectra and shares at different angles excited by broadband lasers with a power density of 1×1015W·cm-2 have significant differences from those of narrowband lasers. Further analysis reveals that the overall share of hot electrons in the lateral direction is higher for broadband lasers compared to narrowband lasers. However, under broadband conditions, the share of SRS at small forward and backward angles is significantly lower than that of narrowband lasers. Preliminary qualitative analysis suggests that SRS may not be the primary mechanism for hot electron generation in this case, and that PDI might play a dominant role in the generation of hot electrons.
  • [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Yang D, Li Z C, Li S W, Hao L, Li X, Guo L, Zou S Y, Jiang X H, Peng X S, Xu T, Li Y L, Zheng C Y, Cai H B, Liu Z J, Zheng J, Long T, Wang Z B, Li H, Kuang Y L, Li Q, Wang F, Liu S Y, Yang J M, Jiang S E, Zhang B H, Ding Y K 2018 Sci. Sin-Phys. Mech. Astron. 48 065203 (in Chinese) [杨冬, 李志超, 李三伟, 郝亮, 李欣, 郭亮, 邹士阳, 蒋小华, 彭晓世, 徐涛 2018 中国科学: 物理学, 力学, 天文学 48 065203]

    [3]

    MacGowan B J, Afeyan B B, Back C A, Berger R L, Bonnaud G, Casanova M, Cohen B I, Desenne D E, DuBois D F, Dulieu A G, Estabrook K G, Fernandez J C, Glenzer S H, Hinkel D E, Kaiser T B, Kalantar D H, Kauffman R L, Kirkwood R K, Kruer W L, Langdon A B, Lasinski B F, Montgomery D S, Moody J D, Munro D H, Powers L V, Rose H A, Rousseaux C, Turner R E, Wilde B H, Wilks S C, Williams E A 1996 Phys. Plasmas 3 2029

    [4]

    Montgomery D S, Afeyan B B, Cobble J A, Fernandez J C, Wilke M D, Glenzer S H, Kirkwood R K, MacGowan B J, Moody J D, Lindman E L, Munro D H, Wilde B H, Rose H A, Dubois D F, Bezzerides B, Vu H X 1998 Phys. Plasmas 5 1973

    [5]

    Li C, Dong L, Feng J, Huang Y, Sun H 2020 Rev. Sci Instrum. 91 026105

    [6]

    Niemann C, Berger R, Divol L, Kirkwood R, Moody J, Sorce C, Glenzer S 2011 J. Instrum. 6 P10008

    [7]

    Froula D, Divol L, London R, Berger R, Döppner T, Meezan N, Ross J, Suter L, Sorce C, Glenzer S 2009 Phys. Rev. Lett. 103 045006

    [8]

    Follett R K, Shaw J G, Myatt J F, Palastro J P, Short R W, Froula D H 2018 Phys. Rev. Lett. 120 135005

    [9]

    Bibeau C, Speck D R, Ehrlich R B, Laumann C W, Kyrazis D T, Henesian M A, Lawson J K, Perry M D, Wegner P J, Weiland T L 1992 Appl. Opt 31 5799

    [10]

    Dixit S N, Feit M D, Perry M D, Powell H T 1996 Opt. Lett 21 1715

    [11]

    Grun J, Emery M E, Manka C K, Lee T N, McLean E A, Mostovych A, Stamper J, Bodner S, Obenschain S P, Ripin B H 1987 Phys. Rev. Lett. 58 2672

    [12]

    Duluc M, Penninckx D, Loiseau P, Riazuelo G, Bourgeade A, Chatagnier A, D'Humières E 2019 Phys. Plasmas 26 42707

    [13]

    Albright B, Yin L, Afeyan B 2014 Phys. Rev. Lett. 113 045002

    [14]

    Feng Q, Liu Z, Cao L, Xiao C, Hao L, Zheng C, Ning C, He X 2020 Nucl Fusion 60 066012

    [15]

    Zhong Z, Li B, Xiong H, Li J, Qiu J, Hao L, Zhang B 2021 Opt. Express 29 1304

    [16]

    Follett R K, Shaw J G, Myatt J F, Dorrer C, Froula D H, Palastro J P 2019 Phys. Plasmas 26 062111

    [17]

    Thomson J J, Karush J I 1974 Phys. Fluids 17 1608

    [18]

    Gao Y, Cui Y, Ji L, Rao D, Zhao X, Li F, Liu D, Feng W, Xia L, Liu J 2020 Matter Radiat. at Extremes 5 065201

    [19]

    Lei A L, Kang N, Zhao Y, Liu H, An H, Xiong J, Wang R, Xie Z, Tu Y, Xu G, Zhou X, Fang Z, Wang W, Xia L, Feng W, Zhao X, Ji L, Cui Y, Zhou S, Liu Z, Zheng C, Wang L, Gao Y, Huang X, Fu S 2024 Phys. Rev. Lett. 132 035102

    [20]

    Wang P P, An H H, Fang Z H, Xiong J, Xie Z Y, Wang C, He Z Y, Jia G, Wang R R, Zheng S, Xia L, Feng W, Shi H T, Wang W, Sun J R, Gao Y Q, Fu S Z 2024 Matter Radiat. at Extremes 9 015602

    [21]

    Moody J, MacGowan B, Glenzer S, Kirkwood R, Kruer W, Montgomery D, Schmitt A, Williams E, Stone G 2000 Phys. Plasmas 7 2114

    [22]

    Yao C, Li J, Hao L, Yan R, Wang C, Lei A L, Ding Y K, Zheng J 2024 Nucl Fusion 64 106013

  • [1] 刘庆康, 张旭, 蔡洪波, 张恩浩, 高妍琦, 朱少平. 强度调制宽带激光对受激拉曼散射动理学爆发的抑制. 物理学报, doi: 10.7498/aps.73.20231679
    [2] 龙欣宇, 王佩佩, 安红海, 熊俊, 谢志勇, 方智恒, 孙今人, 王琛. 宽带激光辐照平面薄膜靶的近前向散射. 物理学报, doi: 10.7498/aps.73.20231613
    [3] 赵家瑞, 于全芝, 梁天骄, 陈黎明, 李玉同, 国承山. 利用光核反应对激光等离子体中超热电子温度诊断的理论研究. 物理学报, doi: 10.7498/aps.62.072501
    [4] 余金清, 金晓林, 周维民, 李斌, 谷渝秋. 激光-纳米丝靶相互作用过程中超热电子的加热机理研究. 物理学报, doi: 10.7498/aps.61.225202
    [5] 刘兰琴, 莫磊, 罗斌, 粟敬钦, 王文义, 王方, 景峰, 魏晓峰. 混合加宽的宽带钕玻璃激光系统的放大特性研究. 物理学报, doi: 10.7498/aps.58.4307
    [6] 董晓刚, 盛政明, 陈 民, 张 杰. 强激光与固体靶作用产生的表面电子加速和辐射研究. 物理学报, doi: 10.7498/aps.57.7423
    [7] 赵宗清, 丁永坤, 谷渝秋, 王向贤, 洪 伟, 王 剑, 郝轶聃, 袁永腾, 蒲以康. 超短超强激光与铜靶相互作用产生Kα源的蒙特卡罗模拟. 物理学报, doi: 10.7498/aps.56.7127
    [8] 刘 维, 樊荣伟, 李晓晖, 陈 辉, 夏元钦, 陈德应. 小分子改性的聚合物固体染料激光特性研究. 物理学报, doi: 10.7498/aps.56.5276
    [9] 刘兰琴, 粟敬钦, 罗 斌, 王文义, 景 峰, 魏晓峰. 基于混合加宽的宽带激光脉冲放大的物理模型. 物理学报, doi: 10.7498/aps.56.6749
    [10] 蔡达锋, 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰. 飞秒激光-金属薄膜靶相互作用中靶前后超热电子能谱的比较. 物理学报, doi: 10.7498/aps.56.346
    [11] 郑志远, 李玉同, 远晓辉, 徐妙华, 梁文锡, 于全芝, 张 翼, 王兆华, 魏志义, 张 杰. 近相对论强度激光与薄膜靶相互作用中靶厚度对超热电子发射方向的影响. 物理学报, doi: 10.7498/aps.55.1894
    [12] 远晓辉, 李玉同, 徐妙华, 郑志远, 梁文锡, 于全芝, 张 翼, 王兆华, 令维军, 魏志义, 赵 卫, 张 杰. 激光入射角对靶面方向超热电子发射的影响. 物理学报, doi: 10.7498/aps.55.5899
    [13] 李 昆, 李玉同, 张 军, 远晓辉, 徐妙华, 王兆华, 张 杰. 不同偏振态下的飞秒激光脉冲与铝靶相互作用中超热电子的产生. 物理学报, doi: 10.7498/aps.55.5909
    [14] 徐妙华, 梁天骄, 张 杰. 利用韧致辐射诊断激光等离子体相互作用产生的超热电子. 物理学报, doi: 10.7498/aps.55.2357
    [15] 王光昶, 郑志坚, 杨向东, 谷渝秋, 刘宏杰, 温天舒, 葛芳芳, 焦春晔, 周维民, 张双根, 王向贤. 超短超强激光与固体靶相互作用中背表面光发射的实验研究. 物理学报, doi: 10.7498/aps.54.4803
    [16] 谷渝秋, 蔡达锋, 郑志坚, 杨向东, 周维民, 焦春晔, 陈 豪, 温天舒, 淳于书泰. 飞秒激光-固体靶相互作用中超热电子能量分布的实验研究. 物理学报, doi: 10.7498/aps.54.186
    [17] 彭晓昱, 张 杰, 金 展, 梁天骄, 仲佳勇, 武慧春, 刘运全, 王兆华, 陈正林, 盛政明, 李玉同, 魏志义. 超短脉冲激光与乙醇微滴相互作用中超热电子的双叶状角分布. 物理学报, doi: 10.7498/aps.53.2625
    [18] 陈正林, 张 杰, 陈黎明, 滕 浩, 董全力, 赵理曾, 魏志义. 金属靶和绝缘靶对飞秒激光吸收的比较. 物理学报, doi: 10.7498/aps.52.1672
    [19] 张军, 张杰, 陈清, 彭练矛, 苍宇, 王怀斌, 仲佳勇. 利用飞秒激光等离子体产生的超热电子进行衍射实验的可行性研究. 物理学报, doi: 10.7498/aps.51.1764
    [20] 王杰, 姚建铨, 于意仲, 王鹏, 张帆, 王涛. 基于混频效应的宽带激光谐波转换理论. 物理学报, doi: 10.7498/aps.50.1092
计量
  • 文章访问数:  47
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-28

/

返回文章
返回