搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压交流氩气放电等离子体射流特性研究:电压、气体流速、外磁场的综合影响

周雄峰 陈彬 刘坤

引用本文:
Citation:

大气压交流氩气放电等离子体射流特性研究:电压、气体流速、外磁场的综合影响

周雄峰, 陈彬, 刘坤

Research on the characteristics of atmospheric pressure AC argon discharge plasma jet: comprehensive effects of discharge voltage, gas flow rate, and external magnetic field

Zhou Xiong-Feng, Chen Bin, Liu Kun
PDF
导出引用
  • 大气压等离子体射流具有广阔的应用前景,而电压、气体流速、外磁场均会影响其性能,其组合影响更会使得放电规律复杂化.但是目前缺乏三者组合对射流特性的综合影响研究,无法更全面评估多放电条件下的放电特性规律.因此,本文以交流氩气等离子体射流为对象,研究了电压、外磁场、气体流速三者组合作用对放电的宏观形貌、功率、气体温度、电子激发温度、电子密度、Ar光谱强度、·OH粒子数密度等参量的影响.结果表明,电压对射流参量的影响规律不受气体流速和外磁场的影响,增加电压总会提升放电性能.加入外磁场可以在不引起放电功率显著变化的情况下提升放电性能,尤其是当磁场仅作用于等离子羽时,提升效果最显著.气体流速对射流性能的改变会受到电压和外磁场的影响,并不是在单个放电条件最优的组合情况下取得最佳的射流性能.本研究有助于更全面了解不同放电条件下射流特性,为优化射流性能提供指导,有利于推动大气压等离子体射流技术的发展.
    Atmospheric pressure plasma jet has garnered significant attention for their vast potential across diverse fields, with the discharge conditions playing a pivotal role in shaping their physicochemical properties and ultimately determining their application efficacy. Factors such as discharge voltage, gas flow rate, and the introduction of an external magnetic field intricately influence the performance of plasma jet. The combined effects of any two of these factors can yield enhanced outcomes, while they also introduce complexity to the discharge phenomena. However, there is currently a lack of research on the combined effects of external magnetic field, discharge voltage, and gas flow rate on the characteristics of plasma jets, making it difficult to comprehensively evaluate the discharge characteristics of plasma jet under multiple discharge conditions. Therefore, this paper focuses on an AC excited atmospheric pressure argon plasma jet and investigates the combined effects of external magnetic field, discharge voltage, and gas flow rate on various characteristic parameters of the plasma jet, encompassing macroscopic morphology, discharge power, gas temperature Tg, electron excitation temperature Texc, electron density ne, emission intensity of excited state Ar* particles, and number density of ground state ŸOH particles by using methods of camera shooting, and electrical parameter measurement, spectroscopic analysis of emission and absorption spectra. The results show that the effect of discharge voltage on the characteristic parameters of the plasma jet remains consistent, unaffected by variations in gas flow rate or the presence of an external magnetic field; an increase in discharge voltage consistently improve jet performance by enhancing the discharge power, extending the plasma plume length, elevating the gas temperature Tg and electron excitation temperature Texc, increasing the electron density ne and emission intensity of excited state Ar* particles, as well as the number density of ground state ŸOH particles. The addition of an external magnetic field can improve the jet performance without significantly changing the discharge power, and the extent of this improvement is influenced by the mode of magnetic field action. Notably, when the magnetic field selectively targets the plasma plume, excluding direct interaction with electrodes discharge area, the enhancement in jet performance is most pronounced. The effect of gas flow rate on jet performance becomes intricate, intertwined with the effects of voltage and the external magnetic field. When an external magnetic field is present, excessive voltage and gas flow rate may reduce the number density of ground state ŸOH particles generated by plasma jet. This underscores the need for a nuanced understanding when optimizing jet performance under multiple discharge conditions. Simply combining the optimal conditions for each individual factor does not guarantee the achievement of peak jet performance when all three discharge conditions act in concert. This study offers valuable insights into the discharge characteristics of plasma jet under varying discharge conditions, providing a guidance for optimizing performance of plasm jet and fostering the advancement of atmospheric pressure plasma jet technology across diverse application domains.
  • [1]

    Ma L, Chen Y, Gong Q, Cheng Z, Ran C F, Liu K, Shi C M 2023Free Rad. Biol. Medic. 204 184-194

    [2]

    Wang X L, Liu J, Li Q X, Li L, Li S R, Ding Y H, Zhao T, Sun Y, Zhang Y T 2023High Volt. 8 841-851

    [3]

    Xi D K, Zhang X H, Yang S Z, Yap S S, Ishikawa K, Hori M, Yap S L 2022Chin. Phys. B 31 128201

    [4]

    Kong X H, Xue S, Li H Y, Yang W M, Martynovich E F, Ning W J, Wang R X 2022Plasma Sources Sci. Technol. 31 095010

    [5]

    Cui X L, Xu Z B, Zhou Y Y, Zhu X, Wang S, Fang Z 2022Surf. Coat. Technol. 451 129066

    [6]

    Kong D L, Yang B Y, He F, Han R Y, Miao J S, Song T L, Ouyang J T 2021Acta Phys. Sin. 70 095205(in Chinese) [, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭 2021 物理学报 095205]

    [7]

    Wang R Y, Shen J Y, Ma Y P X, Qin X R, Qin X, Yang F, Ostrikov K, Zhang Q, He J, Zhong X X 2024, Plasma Process. Polym. 21 2300174

    [8]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Ostrikov K 2021J. Phys. D: Appl. Phys. 54 065201

    [9]

    Liu Z J, Wang S T, Pang B L, Gao Y T, Li Q S, Xu D H, Liu D X, Zhou R W 2022Plasma Sources Sci. Technol. 31 05LT03

    [10]

    Guo L, Xu R B, Guo L, Liu Z C, Zhao Y M, Liu D X, Zhang L, Chen H L, Kong M G 2018Appl. Environ Microbiol. 84 e00726-18

    [11]

    Ran C F, Zhou X F, Wang Z Y, Liu K 2024Plasma Sources Sci. Technol. 33 015009

    [12]

    Liu K, Geng W Q, Zhou X F, Duan Q S, Zheng Z F, Ostrikov K 2023 Plasma Sources Sci. Technol. 32 025005

    [13]

    Liu K, Zuo J, Ran C F, Yang M H, Geng W Q, Liu S T, Ostrikov K 2022Phys. Chem. Chem. Phys. 24 8940-8949

    [14]

    Xu H M, Gao J G, Jia P Y, Ran J X, Chen J Y, Li J M 2024Chin. Phys. B 33 015205

    [15]

    Chen Z Q, Zhong A, Dai D, Ning W J 2022Acta Phys. Sin. 71 165201(in Chinese) [陈忠琪, 钟安, 戴栋, 宁文军 2022 物理学报 71 165201]

    [16]

    Huang B D, Zhang C, Zhu W C, Lu X P, Shao T 2021High volt. 6 665-673

    [17]

    Wang B H, Chen L, Liu G M, Song P, Cheng F C, Sun D L. Zeng W, Xu L 2023Phys. Scr. 98 045612

    [18]

    Chen M, Dong X P, Wu K Y, Ran J X, Jia P Y, Wu J C, Li X C 2024Appl. Phys. Lett. 124 214102

    [19]

    Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023High Volt. 8 1161-1167

    [20]

    Zheng X X, Jia P Y, Ran J X, Li J M, Sun H X, Li X C 2024Acta Phys. Sin. 73 085201(in Chinese) [张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰 2024 物理学报 73 085201]

    [21]

    Tian F C, Chen L, Pei H, Bai J Q, Zeng W 2023Spectros. Spect. Anal. 43 3682-3689(in Chinese) [田富超, 陈雷, 裴欢, 白洁琪, 曾文 光谱学与光谱分析 43 3682-3689]

    [22]

    Jurov A, Skoro N, Spasic K, Modic M, Hojnik N, Vojosevic D, Durovic M, Petrovic Z L, Cvelbar U 2022Eur. Phys. J. D 76 29

    [23]

    Bousba H E, Sahli S, Namous W S E, Benterrouche L 2022IEEE Trans. Plasma Sci. 50 1218-1226

    [24]

    Zhou X F, Yang M H, Xiang H F, Geng W Q, Liu K 2023Phys. Chem. Chem. Phys. 25 27427

    [25]

    Liu K, Yang M H, Zhou X F, Bai Y, Ran C F 2023Chem. J. Chinese Universities 44 20230327(in Chinese) [刘坤,杨明昊, 周雄峰,白杨, 冉从福 高等学校化学学报 44 20230327]

    [26]

    Jiang W M, Tang J, Wang Y S, Zhao W, Duan Y X 2014Appl. Phys. Lett. 104 013505

    [27]

    Liu C T, Kumakura T, Ishikawa K, Hashizume H, Takeda K, Ito M, Hori M, Wu J S 2016Plasma Sources Sci. Technol. 25 065005

    [28]

    Xu H, Guo S S, Zhang H, Liu D X, Xie K 2021Phys. Plasmas 28 123521

    [29]

    Sah A K, Al-Amin M, Talukder M R 2023Environ. Sci. Pollut. Res. 30 74877-74888

    [30]

    Guo H F, Xu Y F, Wang Y Y, Ren C S 2020Phys. Plasmas 27 023519

    [31]

    Wang M Y, Han R Y, Zhang C Y, Ouyang J T 2020IEEE International Conference on High Voltage Engineering and Application Beijing, China, September 6-10, 2020 pp1-4

    [32]

    Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022Vacuum 198 110901

    [33]

    Liu K, Zuo J, Zhou X F, Ran C F, Yang M H, Geng W Q 2023Acta Phys. Sin. 72055201(in Chinese) [ 刘坤,左杰,周雄峰,冉从福,杨明昊, 耿文强 2023 物理学报 72 055201]

    [34]

    Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L, Wang S 2017Plasma Sci. Technol. 19 125401

    [35]

    Liu K, Xiang H F, Zhou X F, Xia H T, Li H 2023Acta Phys. Sin. 72 115201(in Chinese) [刘坤,项红甫, 周雄峰,夏昊天, 李华 2023 物理学报 72 115201]

    [36]

    Chen X, Wang X Q, Zhang B X, Yuan M, Yang S Z 2023Chin. Phys. B 32 115201

    [37]

    Yang D Z, Zhou X F, Liang J P, Xu Q N, Wang H L, Yang K, Wang B, Wang W C 2021J. Phys. D: Appl. Phys. 54 244002

    [38]

    Ran C F, Zhou X F, Liu K 2024Phys. Chem. Chem. Phys. 26 18408-18417

    [39]

    Dang V S M M, Foucher E, Rousseau A 2017J. Phys. D: Appl. Phys. 48 424003

    [40]

    Zhou X F, Xiang H F, Yang M H, Geng W Q, Liu K 2023J. Phys. D: Appl. Phys. 56 455202

    [41]

    Chen J Y, Zhao N, Wu J C, Wu K Y, Zhang F R, Ran J X, Jia P Y, Pang X X, Li X C 2022Chin. Phys. B 31 065205

    [42]

    Gudmundsson J T, Thorstinsson E G 2007Plasma Sources Sci. Technol. 16 399-412

    [43]

    Sakiyama Y, Graves D B, Chang H W, Shimuzu T, Morfill G E 2012J. Phys. D: Appl. Phys. 45 425201

    [44]

    Tian W, Tachibana K, Kushner M J 2014J. Phys. D: Appl. Phys. 47 055202

    [45]

    Jiang N, Sun Y, Peng B F, Li J, Shang K F, Lu N, Wu Y 2022Plasma Process. Polym. 19 e2100108

    [46]

    Hu Y, Luo J Y, Cai Y Y, Lu X P 2023Acta Phys. Sin. 72 130501(in Chinese) [ 胡杨, 罗婧怡,蔡雨烟, 卢新培 物理学报 72 130501]

    [47]

    Singh K S, Sharma A K 2021J. Appl. Phys. 130 043302

    [48]

    Jeroen J. van de Sande M, Sola A, Gamero A, Rodero A, van der Mullen J 2003Plasma Sources Sci. Technol. 12 464

  • [1] 李晨璞, 吴魏霞, 张礼刚, 胡金江, 谢革英, 郑志刚. 具有不同扩散系数的活性手征粒子分离. 物理学报, doi: 10.7498/aps.73.20240686
    [2] 崔岁寒, 左伟, 黄健, 李熙腾, 陈秋皓, 郭宇翔, 杨超, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振. 面向复杂求解域的高效粒子网格/蒙特卡罗模型与阳极层离子源仿真. 物理学报, doi: 10.7498/aps.72.20222394
    [3] 刘坤, 项红甫, 周雄峰, 夏昊天, 李华. 固定功率下大气压交流氩气等离子体射流的光谱特性. 物理学报, doi: 10.7498/aps.72.20230307
    [4] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟. 物理学报, doi: 10.7498/aps.71.20211150
    [5] 陈忠琪, 钟安, 戴栋, 宁文军. 屏蔽气体流速对同轴双管式氦气大气压等离子体射流粒子分布的影响. 物理学报, doi: 10.7498/aps.71.20220421
    [6] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究. 物理学报, doi: 10.7498/aps.70.20202246
    [7] 孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭. 大气压电晕等离子体射流制备氧化钛薄膜. 物理学报, doi: 10.7498/aps.70.20202181
    [8] 廖晶晶, 蔺福军. 混合手征活性粒子在时间延迟反馈下的扩散和分离. 物理学报, doi: 10.7498/aps.69.20200505
    [9] 郭恒, 苏运波, 李和平, 曾实, 聂秋月, 李占贤, 李志辉. 亚大气压六相交流电弧等离子体射流特性研究:实验测量. 物理学报, doi: 10.7498/aps.67.20172556
    [10] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, doi: 10.7498/aps.67.20172192
    [11] 王鲁顺, 江慧, 孔祥木. 混合自旋XY系统热纠缠的研究. 物理学报, doi: 10.7498/aps.61.240304
    [12] 蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富. 外磁场对介质表面次级电子倍增效应的影响. 物理学报, doi: 10.7498/aps.61.075101
    [13] 胡明, 万树德, 钟雷, 刘昊, 汪海. 磁控直流辉光等离子体放电特性. 物理学报, doi: 10.7498/aps.61.045201
    [14] 刘莉莹, 张家良, 郭卿超, 王德真. 大气压等离子体辅助多晶硅薄膜化学气相沉积参数诊断. 物理学报, doi: 10.7498/aps.59.2653
    [15] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究. 物理学报, doi: 10.7498/aps.59.3324
    [16] 张 磊, 任 敏, 胡九宁, 邓 宁, 陈培毅. 用外磁场控制电流感应磁化翻转效应中的临界电流方法. 物理学报, doi: 10.7498/aps.57.2427
    [17] 郭玉献, 王 劼, 李红红, 徐彭寿, 王 锋, 闫文盛. 样品电流模式下外磁场引起的X射线吸收谱强度变化. 物理学报, doi: 10.7498/aps.56.561
    [18] 严建华, 屠 昕, 马增益, 潘新潮, 岑可法, Cheron Bruno. 大气压直流氩等离子体射流工作特性研究. 物理学报, doi: 10.7498/aps.55.3451
    [19] 孙春峰. 钻石分形晶格上Ising模型的配分函数与关联函数. 物理学报, doi: 10.7498/aps.54.3768
    [20] 杨 涓, 朱良明, 苏维仪, 毛根旺. 电磁波在磁化等离子体表面的功率反射系数计算研究. 物理学报, doi: 10.7498/aps.54.3236
计量
  • 文章访问数:  131
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-08

/

返回文章
返回