搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固定功率下大气压交流氩气等离子体射流的光谱特性

刘坤 项红甫 周雄峰 夏昊天 李华

引用本文:
Citation:

固定功率下大气压交流氩气等离子体射流的光谱特性

刘坤, 项红甫, 周雄峰, 夏昊天, 李华

Spectral diagnosis of atmospheric pressure AC argon plasma jet at constant power

Liu Kun, Xiang Hong-Fu, Zhou Xiong-Feng, Xia Hao-Tian, Li Hua
PDF
HTML
导出引用
  • 大气压kHz频率交流等离子体射流具有广泛的应用前景, 而目前研究电源参数影响时只能探究单一驱动参数变化时的射流放电规律, 这无疑也会耦合进功率对射流放电的影响, 不能体现驱动参数本身对放电的影响. 本研究利用自研的可调脉冲调制占空比的交流电源驱动大气压氩气等离子体射流, 结合发射光谱与吸收光谱诊断, 研究了固定放电功率下不同电压、频率和脉冲调制占空比参数对等离子体射流的气体温度Tg、电子激发温度Texc、电子密度ne, OH粒子数密度等性能的影响. 结果表明, 固定功率下, 电子密度不会随着驱动参数的改变而变化, 而气体温度、电子激发温度、OH粒子数密度变化受脉冲调制占空比影响最大; 其次是电压影响, 频率影响最小. 降低频率提高电压时气体温度和电子激发温度会升高, ·OH粒子数密度会增大; 而降低脉冲调制占空比提高电压时气体温度和电子激发温度会降低, ·OH粒子数密度会减少. 此外, 降低脉冲调制占空比能够使得大气压等离子体射流在更低的气体温度下产生更多的·OH活性粒子.
    In the application of atmospheric pressure plasma jet, because the frequency of AC power supply is limited in the kHz range, the research on the influence of power supply electrical parameters on discharge is basically aimed at the variation of plasma jet characteristics with a single driving electrical parameter ( such as voltage and frequency). However, the discharge power usually changes with a single electrical parameter changing, which can undoubtedly affect the discharge performances including the plasma physical parameters and generated reactive species, resulting in the failure to reflect the influence of the single driving parameter on the discharge. In this study, an atmospheric pressure argon plasma jet is driven by a home-made AC power supply with adjustable pulse modulated duty cycle. And combining the diagnosis of the optical emission spectrum and the optical absorption spectrum, the influences of the voltage, frequency and pulse modulated duty cycle parameters on the gas temperature Tg, electron excitation temperature Texc, electron density ne, and OH radical particle number density of the plasma jet are studied under a constant discharge power of 2 W. The results show that at the constant power, the electron density ne does not change with the variation of electrical parameters as the linkage change of electrical parameters will offset the influence of a single parameter on the electron density, while the gas temperature Tg, electron excitation temperature Texc, and OH radical particle density are most affected by the pulse modulated duty cycle, followed by driving voltage, and the frequency effect is the smallest. Under the constant power, as the frequency decreases, the voltage will increase, and also the gas temperature Tg, electron excitation temperature Texc, and OH radical particle number density will increase. On the contrary, although the voltage also increases as the pulse modulated duty cycle decreases, the gas temperature Tg, electron excitation temperature Texc, and OH radical particle number density are all reduced. In addition, the results indicate that reducing the duty cycle of AC power can make the atmospheric pressure plasma jet produce more OH radicals at lower gas temperature. This study provides a new insight into the influence of electrical parameters on the characteristics of atmospheric pressure plasma jets under constant power, and also presents a guidance for choosing power parameters of plasma jets with low gas temperature and high density of reactive species, which is conducive to the development of atmospheric pressure plasma jets in biomedicine and other fields.
      通信作者: 刘坤, liukun@cqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51877021)、电力设备电气绝缘国家重点实验室基金(批准号: EIPE21204)和广西自动检测技术与仪器重点实验室基金(批准号: YQ21204)资助的课题.
      Corresponding author: Liu Kun, liukun@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51877021), the Foundation of State Key Laboratory of Electrical Insulation for Power Equipment, China (Grant No. EIPE21204), and the Foundation of Guangxi Key Laboratory of Automatic Testing Technology and Instruments, China (Grant No. YQ21204).
    [1]

    Fallon M, Kennedy S, Kumar S, Daniels S, Humphreys H 2021 Plasma Med. 11 15

    [2]

    Wang T, Wang J H, Wang S Q, lv L, Li M, Shi L P 2021 Appl. Surf. Sci. 570 151258Google Scholar

    [3]

    张海宝, 陈强 2021 物理学报 70 095203Google Scholar

    Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar

    [4]

    Kong X H, Xue S, Li H Y, Yang W M, Martynovich E F, Ning W J, Wang R X 2022 Plasma Sources Sci. Technol. 31 095010Google Scholar

    [5]

    Wang R X, Xia Z C, Kong X H, Xue S, Wang H Y 2022 Surf. Coat. Technol. 437 128365Google Scholar

    [6]

    Shimizu T, Ikehara Y 2017 J. Phys. D: Appl. Phys. 50 503001Google Scholar

    [7]

    Huang Y M, Chang W C, Hsu C L 2021 Food Res. Int. 141 110108Google Scholar

    [8]

    Lu X P, Keudar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng., R 138 36Google Scholar

    [9]

    Schweigert I, Zakrevsky D, Milakhina E, Gugin P, Biryukov M, Patrakova E, Koval O 2022 Plasma Phys. Control. Fusion 64 044015Google Scholar

    [10]

    Pang B L, Liu Z J, Wang S T, Gao Y T, Zhang H Y, Zhang F, Tantai X M, Xu D H, Liu D X, Kong M G 2021 J. Appl. Phys. 130 153301Google Scholar

    [11]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Ostrikov K 2021 J. Phys. D: Appl. Phys. 54 065201Google Scholar

    [12]

    Liu Z J, Wang S T, Pang B L, Gao Y T, Li Q S, Xu D H, Liu D X, Zhou R W 2022 Plasma Sources Sci. Technol. 31 05LT03Google Scholar

    [13]

    Guo L, Xu R B, Guo L, Liu Z C, Zhao Y M, Liu D X, Zhang L, Chen H L, Kong M G 2018 Appl. Environ Microbiol. 84 e00726

    [14]

    Xiong Q, Lu X, Ostrikov K, Jiang Z Y 2009 Phys. Plasmas 16 043505Google Scholar

    [15]

    Kim D B, Rhee J K, Gweon B, Moon S Y, Choe W 2007 Appl. Phys. Lett. 91 151502Google Scholar

    [16]

    Gott R P, Xu K G 2019 IEEE Trans. Plasma Sci. 47 4988Google Scholar

    [17]

    Qian M Y, Fan Q Q, Ren C S, Wang D Z, Nie Q Y, Zhang J L, Wen X Q 2012 Thin Solid Films 521 265Google Scholar

    [18]

    Moon S Y, Kim D B, Gweon B, Choe W 2008 Appl. Phys. Lett. 93 2215006

    [19]

    Long Y X, Li H X, Meng X S, Li J, Xiang Z C 2018 Mod. Phys. Lett. B 32 1850315

    [20]

    Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L, Wang S 2017 Plasma Sci. Technol. 19 125401Google Scholar

    [21]

    付强, 王聪, 王语菲, 常正实 2022 物理学报 71 115204Google Scholar

    Fu Q, Wang C, Wang Y F, Chang Z S 2022 Acta Phys. Sin. 71 115204Google Scholar

    [22]

    Liu K, Lei J, Zheng Z, Zhu Z, Liu S 2018 Appl. Surf. Sci. 458 183Google Scholar

    [23]

    Yang D Z, Zhou X F, Liang J P, Xu Q N, Wang H L, Yang K, Wang B, Wang W C 2021 J. Phys. D: Appl. Phys. 54 244002Google Scholar

    [24]

    Liu K, Zuo J, Ran C F, Yang M H, Geng W Q, Liu S T, Ostrikov K 2022 Phys. Chem. Chem. Phys. 24 8940Google Scholar

    [25]

    Liu K, Geng W Q, Zhou X F, Duan Q S, Zheng Z F, Ostrikov K 2023 Plasma Sources Sci. Technol. 32 025005Google Scholar

    [26]

    刘坤, 左杰, 周雄峰, 冉从福, 杨明昊, 耿文强 2023 物理学报 72 055201Google Scholar

    Liu K, Zuo J, Zhou X F, Ran C F, Yang M H, Geng W Q 2023 Acta Phys. Sin. 72 055201Google Scholar

    [27]

    Yuan H, Feng J, Yang D Z, Zhou X F, Liang J P, Zhang L, Zhao Z L, Wang W C 2020 J. Appl. Phys. 128 093303Google Scholar

    [28]

    王伟, 王永刚, 吴忠航, 饶俊峰, 姜松, 李孜 2023 光谱学与光谱分析 43 455Google Scholar

    Wang W, Wang Y G, WU Z H, Rao J F, Jiang S, Li Z 2023 Spectrosc. Spectral Anal. 43 455Google Scholar

    [29]

    Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar

    [30]

    Tu X, Cheron B G, Yan J H, Cen K F 2007 Plasma Sources Sci. Technol. 16 803Google Scholar

    [31]

    Peng B F, Jiang N, Shang K F, Lu N, Li J, Wu Y 2022 J. Phys. D:Appl. Phys. 55 265202Google Scholar

    [32]

    Bruggeman P, Schram D, Gonzalez M 2009 Plasma Sources Sci. Technol. 18 025017Google Scholar

    [33]

    Belostotskiy S G, Ouk T, Donnelly V M 2010 J. Appl. Phys. 107 05330

    [34]

    Zhou X F, Wang W C, Yang D Z, Liang J P, Zhao Z L, Yuan H 2019 Plasma Process Polym. 16 e1800124Google Scholar

    [35]

    Gaens W V, Bogaerts A 2013 J Phys. D:Appl. Phys. 46 275201Google Scholar

    [36]

    Itikawa Y, Mason N 2005 J. Phys. Chem. Ref. Data 34 1Google Scholar

    [37]

    Zhou X F, Zhao Z L, Liang J P, Yuan H, Wang W C, Yang D Z 2019 Plasma Process Polym. 16 e1900001

  • 图 1  大气压氩气等离子体射流的 (a)实验装置、(b)驱动电源输出电压波形、(c)发射光谱图和(d)吸收光谱图的示意图

    Fig. 1.  Schematic diagram of the (a) experimental device, (b) output voltage waveform of driving power, (c) emission spectrum, and (d) absorption spectrum of atmospheric pressure argon plasma jet.

    图 2  大气压氩气等离子体射流气体温度 (a)拟合示意图和(b)随驱动参数变化趋势

    Fig. 2.  (a) Fitting diagram of the gas temperature of atmospheric pressure argon plasma jet and (b) the vibration trend with driving parameters.

    图 3  大气压氩气等离子体射流电子激发温度的(a)玻尔兹曼图解法示意图和(b)随驱动参数变化趋势

    Fig. 3.  (a) Boltzmann diagram of the electron excitation temperature of atmospheric pressure argon plasma jet and (b) the vibration trend with driving parameters.

    图 4  大气压氩气等离子体射流电子密度的(a)拟合示意图和(b)随驱动参数变化趋势

    Fig. 4.  (a) Fitting diagram of electron density of atmospheric pressure argon plasma jet and (b) variation trend with driving parameters.

    图 5  大气压氩气等离子体射流·OH粒子数密度随(a)驱动参数变化和(b)气体温度变化的趋势

    Fig. 5.  The trend of ·OH particle number density of atmospheric pressure argon plasma jet variation with (a) driving parameters and (b) gas temperature.

    表 1  固定功率2 W时不同频率和脉冲调制占空比下的电压 (单位: kV)

    Table 1.  The voltage (unit: kV) at different frequencies and duty cycles under a constant power of 2 W.

    频率/kHz脉冲调制占空比
    100%70%50%30%
    711.013.014.516.4
    810.412.414.015.7
    99.911.913.515.1
    109.311.413.014.6
    118.811.012.513.9
    128.410.412.013.1
    137.99.711.011.9
    147.58.910.011.3
    下载: 导出CSV

    表 2  玻尔兹曼图解法计算电子激发温度用到的Ar原子谱线相关参数

    Table 2.  The relevant parameters of Ar atomic spectral lines used in calculating electron excitation temperature by Boltzmann diagram method.

    λji/nmEj/cm–1gjAji/(106 s–1)
    706.7107289.753.80
    727.3107496.431.83
    738.4107289.758.47
    750.4108722.2144.50
    751.5107054.3140.20
    763.5106237.5524.50
    772.4107496.4311.70
    794.8107131.7318.60
    800.6106237.554.90
    801.5105617.359.28
    826.5107496.4315.30
    下载: 导出CSV

    表 3  大气压氩气等离子体射流生成·OH的相关反应式

    Table 3.  The relevant generation pathways of ·OH in atmospheric pressure argon plasma jet.

    反应方程式反应系数编号文献
    Ar + e → Ar* + e$f\left( { {T_{\rm{e}}} } \right)$R1[34]
    Ar* + H2O → Ar + ·H +··OH$ 2.10 \times {10^{ - 10}} $R2[35]
    e + H2O → H2O+ + 2 e$f\left( { {T_{\rm{e}}} } \right)$R3[36]
    e + H2O+ → ·H +··OH$ 1.38 \times {10^{ - 8}} $R4[35]
    e + H2O → e + ·H +··OH$f\left( { {T_{\rm{e}}} } \right)$R5[37]
    e + H2O → 2 e + H+ +··OH$f\left( { {T_{\rm{e}}} } \right)$R6[36]
    下载: 导出CSV
  • [1]

    Fallon M, Kennedy S, Kumar S, Daniels S, Humphreys H 2021 Plasma Med. 11 15

    [2]

    Wang T, Wang J H, Wang S Q, lv L, Li M, Shi L P 2021 Appl. Surf. Sci. 570 151258Google Scholar

    [3]

    张海宝, 陈强 2021 物理学报 70 095203Google Scholar

    Zhang H B, Chen Q 2021 Acta Phys. Sin. 70 095203Google Scholar

    [4]

    Kong X H, Xue S, Li H Y, Yang W M, Martynovich E F, Ning W J, Wang R X 2022 Plasma Sources Sci. Technol. 31 095010Google Scholar

    [5]

    Wang R X, Xia Z C, Kong X H, Xue S, Wang H Y 2022 Surf. Coat. Technol. 437 128365Google Scholar

    [6]

    Shimizu T, Ikehara Y 2017 J. Phys. D: Appl. Phys. 50 503001Google Scholar

    [7]

    Huang Y M, Chang W C, Hsu C L 2021 Food Res. Int. 141 110108Google Scholar

    [8]

    Lu X P, Keudar M, Laroussi M, Choi E, Szili E J, Ostrikov K 2019 Mater. Sci. Eng., R 138 36Google Scholar

    [9]

    Schweigert I, Zakrevsky D, Milakhina E, Gugin P, Biryukov M, Patrakova E, Koval O 2022 Plasma Phys. Control. Fusion 64 044015Google Scholar

    [10]

    Pang B L, Liu Z J, Wang S T, Gao Y T, Zhang H Y, Zhang F, Tantai X M, Xu D H, Liu D X, Kong M G 2021 J. Appl. Phys. 130 153301Google Scholar

    [11]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Ostrikov K 2021 J. Phys. D: Appl. Phys. 54 065201Google Scholar

    [12]

    Liu Z J, Wang S T, Pang B L, Gao Y T, Li Q S, Xu D H, Liu D X, Zhou R W 2022 Plasma Sources Sci. Technol. 31 05LT03Google Scholar

    [13]

    Guo L, Xu R B, Guo L, Liu Z C, Zhao Y M, Liu D X, Zhang L, Chen H L, Kong M G 2018 Appl. Environ Microbiol. 84 e00726

    [14]

    Xiong Q, Lu X, Ostrikov K, Jiang Z Y 2009 Phys. Plasmas 16 043505Google Scholar

    [15]

    Kim D B, Rhee J K, Gweon B, Moon S Y, Choe W 2007 Appl. Phys. Lett. 91 151502Google Scholar

    [16]

    Gott R P, Xu K G 2019 IEEE Trans. Plasma Sci. 47 4988Google Scholar

    [17]

    Qian M Y, Fan Q Q, Ren C S, Wang D Z, Nie Q Y, Zhang J L, Wen X Q 2012 Thin Solid Films 521 265Google Scholar

    [18]

    Moon S Y, Kim D B, Gweon B, Choe W 2008 Appl. Phys. Lett. 93 2215006

    [19]

    Long Y X, Li H X, Meng X S, Li J, Xiang Z C 2018 Mod. Phys. Lett. B 32 1850315

    [20]

    Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L, Wang S 2017 Plasma Sci. Technol. 19 125401Google Scholar

    [21]

    付强, 王聪, 王语菲, 常正实 2022 物理学报 71 115204Google Scholar

    Fu Q, Wang C, Wang Y F, Chang Z S 2022 Acta Phys. Sin. 71 115204Google Scholar

    [22]

    Liu K, Lei J, Zheng Z, Zhu Z, Liu S 2018 Appl. Surf. Sci. 458 183Google Scholar

    [23]

    Yang D Z, Zhou X F, Liang J P, Xu Q N, Wang H L, Yang K, Wang B, Wang W C 2021 J. Phys. D: Appl. Phys. 54 244002Google Scholar

    [24]

    Liu K, Zuo J, Ran C F, Yang M H, Geng W Q, Liu S T, Ostrikov K 2022 Phys. Chem. Chem. Phys. 24 8940Google Scholar

    [25]

    Liu K, Geng W Q, Zhou X F, Duan Q S, Zheng Z F, Ostrikov K 2023 Plasma Sources Sci. Technol. 32 025005Google Scholar

    [26]

    刘坤, 左杰, 周雄峰, 冉从福, 杨明昊, 耿文强 2023 物理学报 72 055201Google Scholar

    Liu K, Zuo J, Zhou X F, Ran C F, Yang M H, Geng W Q 2023 Acta Phys. Sin. 72 055201Google Scholar

    [27]

    Yuan H, Feng J, Yang D Z, Zhou X F, Liang J P, Zhang L, Zhao Z L, Wang W C 2020 J. Appl. Phys. 128 093303Google Scholar

    [28]

    王伟, 王永刚, 吴忠航, 饶俊峰, 姜松, 李孜 2023 光谱学与光谱分析 43 455Google Scholar

    Wang W, Wang Y G, WU Z H, Rao J F, Jiang S, Li Z 2023 Spectrosc. Spectral Anal. 43 455Google Scholar

    [29]

    Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar

    [30]

    Tu X, Cheron B G, Yan J H, Cen K F 2007 Plasma Sources Sci. Technol. 16 803Google Scholar

    [31]

    Peng B F, Jiang N, Shang K F, Lu N, Li J, Wu Y 2022 J. Phys. D:Appl. Phys. 55 265202Google Scholar

    [32]

    Bruggeman P, Schram D, Gonzalez M 2009 Plasma Sources Sci. Technol. 18 025017Google Scholar

    [33]

    Belostotskiy S G, Ouk T, Donnelly V M 2010 J. Appl. Phys. 107 05330

    [34]

    Zhou X F, Wang W C, Yang D Z, Liang J P, Zhao Z L, Yuan H 2019 Plasma Process Polym. 16 e1800124Google Scholar

    [35]

    Gaens W V, Bogaerts A 2013 J Phys. D:Appl. Phys. 46 275201Google Scholar

    [36]

    Itikawa Y, Mason N 2005 J. Phys. Chem. Ref. Data 34 1Google Scholar

    [37]

    Zhou X F, Zhao Z L, Liang J P, Yuan H, Wang W C, Yang D Z 2019 Plasma Process Polym. 16 e1900001

  • [1] 沈元毅, 雷鹏, 王新兵, 左都罗. He/Ar/Kr光泵稀有气体激光介质中的Ar-Kr共振能量转移. 物理学报, 2023, 72(19): 195201. doi: 10.7498/aps.72.20230956
    [2] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟. 物理学报, 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [3] 刘国荣, 朱维君, 褚润通, 王伟, 袁萍, 安婷婷, 万瑞斌, 孙对兄, 马云云, 郭志艳. 依据不同波段光谱诊断闪电回击通道温度. 物理学报, 2022, 71(10): 109201. doi: 10.7498/aps.71.20211673
    [4] 陈忠琪, 钟安, 戴栋, 宁文军. 屏蔽气体流速对同轴双管式氦气大气压等离子体射流粒子分布的影响. 物理学报, 2022, 71(16): 165201. doi: 10.7498/aps.71.20220421
    [5] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究. 物理学报, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [6] 孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭. 大气压电晕等离子体射流制备氧化钛薄膜. 物理学报, 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [7] 廖晶晶, 蔺福军. 混合手征活性粒子在时间延迟反馈下的扩散和分离. 物理学报, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [8] 郭恒, 苏运波, 李和平, 曾实, 聂秋月, 李占贤, 李志辉. 亚大气压六相交流电弧等离子体射流特性研究:实验测量. 物理学报, 2018, 67(4): 045201. doi: 10.7498/aps.67.20172556
    [9] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [10] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [11] 梁亦寒, 胡广月, 袁鹏, 王雨林, 赵斌, 宋法伦, 陆全明, 郑坚. 纳秒激光烧蚀固体靶产生的等离子体在外加横向磁场中膨胀时的温度和密度参数演化. 物理学报, 2015, 64(12): 125204. doi: 10.7498/aps.64.125204
    [12] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X辐射谱线的分离及电子温度的提取. 物理学报, 2014, 63(9): 095201. doi: 10.7498/aps.63.095201
    [13] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [14] 黄骏, 陈维, 李辉, 王鹏业, 杨思泽. 大气压冷等离子体射流灭活子宫颈癌Hela细胞. 物理学报, 2013, 62(6): 065201. doi: 10.7498/aps.62.065201
    [15] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断. 物理学报, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [16] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究. 物理学报, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [17] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究. 物理学报, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [18] 刘莉莹, 张家良, 郭卿超, 王德真. 大气压等离子体辅助多晶硅薄膜化学气相沉积参数诊断. 物理学报, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [19] 孙 姣, 张家良, 王德真, 马腾才. 一种新型大气压毛细管介质阻挡放电冷等离子体射流技术. 物理学报, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [20] 严建华, 屠 昕, 马增益, 潘新潮, 岑可法, Cheron Bruno. 大气压直流氩等离子体射流工作特性研究. 物理学报, 2006, 55(7): 3451-3457. doi: 10.7498/aps.55.3451
计量
  • 文章访问数:  2382
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-02
  • 修回日期:  2023-03-16
  • 上网日期:  2023-03-27
  • 刊出日期:  2023-06-05

/

返回文章
返回