搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光谱诊断和时域有限差分方法计算触发闪电电流与电磁场

索煜航 申晓志 齐奇 张华明

引用本文:
Citation:

基于光谱诊断和时域有限差分方法计算触发闪电电流与电磁场

索煜航, 申晓志, 齐奇, 张华明

Calculation of triggered lightningcurrent and electromagnetic fields based on spectral diagnosis and finite-difference time-domain method

SUO Yuhang, SHEN Xiaozhi, QI Qi, ZHANG Huaming
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用无狭缝摄谱技术获取了中国广东一次人工触发闪电通道等离子体的光谱. 基于光谱诊断方法确定了该触发闪电通道电流的最大值与最小值分别为30.9 kA和25.6 kA, 并采用线性电流衰减传输线模型(modified transmission line with linear current decay, MTLL)对电流进行了模拟. 在此基础上, 采用时域有限差分方法(finite-difference time-domain, FDTD)和传输线模型研究了不同距离处的电场分布特征, 并对58 m处产生的电场进了比较. 结果发现: 当回击速度取1.3×108 m/s时, 辐射电场与实验垂直电场偏差较大, 但与FDTD方法模拟的垂直电场符合一致. 进一步, 采用FDTD方法、偶极子方法、电荷-磁场极限估算法研究了58 m, 90 m, 1.6 km的磁场分布. 与实验数据比较发现: 不同计算方法与实验值在58 m和90 m处有一定差异, 但在1.6 km处符合一致.
    The channel plasma characteristics of an artificially triggered lightning in Guangdong, China, are analyzed using slit-free spectroscopy technology. Based on spectral diagnostic methods, the maximum and minimum values of the triggered lightning channel current are determined to be about 30.9 kA and 25.6 kA (minimum), respectively, and the current is simulated using a modified transmission line model with linear current decay (MTLL). To investigate the electric field distribution, the finite-difference time-domain (FDTD) method and transmission line (TL) model are employed. At a distance of 58 m, assuming a return stroke velocity of 1.3 × 108 m/s, the TL-predicted radiation electric field deviates from experimental electric field, but is very close to the FDTD-simulation of the vertical electric field. Moreover, the analyses of magnetic fields at 58 m, 90 m, and 1.6 km are compared using FDTD simulations, dipole approximation, and charge magnetic field limit (CMFL) estimation. The discrepancies between calculated value and experimental values appear at 58 m and 90 m, which may be due to the near-field interference and measurement limitation. However, they become small at 1.6 km. This work is helpful for the study of lightning electromagnetic field properties and spectral diagnosis.
  • 图 1  (a) 触发闪电测量装置示意图; (b) 触发闪电的实验场地; (c) 触发闪电通道示意图; (d) 数值计算模型. $\otimes $表示垂直指向纸上

    Fig. 1.  (a) Schematic diagram of triggering lightning measurement device; (b) the experimental site; (c) schematic diagram of lightning channel; (d) numerical calculation model. $\otimes $: pointing vertically towards the paper.

    图 2  2022年7月5日在中国广东拍摄的某次触发闪电的光谱 (a) 触发闪电通道和衍射光谱; (b) 为触发闪电的分析光谱

    Fig. 2.  The spectrum of a triggered lightning captured on July 5th, 2022 in Guangdong, China: (a) Trigger lightning channel and its diffraction spectra; (b) spectral analysis for triggering lightning.

    图 3  电流测量过程. X, Y, Z轴对应于电导率、通道半径、电流. 通道半径和电导率的交点位置对应的电流即为测量电流. Exp.Shen 2024引自文献[9]

    Fig. 3.  Measurement process of Current. X, Y and Z axes correspond to electron conductivity, channel radius, and current. The current corresponding to the intersection of channel radius and electron conductivity is the measured current. Exp. Shen 2024 cites from Ref.[9].

    图 4  MTLL电流模拟. F190611124401和Flash063002为两次实验电流. Exp.Cai引自文献[2,41]

    Fig. 4.  MTLL numerical simulation. F190611124401 and Flash063002 are two measurements. Exp. Cai cites from Ref. [2,41]

    图 5  (a), (b) FDTD模拟电场与实验电场对比; (c) $ {E}_{r} $分布; (d)电场对比. Exp.Cai 2021引自[41]

    Fig. 5.  (a), (b) Comparison between FDTD simulated electric field and the experimental electric field; (c) Er distribution; (d) electric field comparison. Exp. Cai 2021 quoted from [41].

    图 6  (a), (b), (c) FDTD模拟磁场、偶极子方法计算磁场、电荷-磁场、实验磁场; (d) 磁场数据. Exp.Cai 2020引自文献[2]

    Fig. 6.  (a), (b), (c) FDTD simulation of magnetic field, dipole method for calculating magnetic field, charge magnetic field, and (d) experimental magnetic field. Exp. Cai 2020 cited from reference [2].

    表 2  基于实验电流得到的传输线模型和FDTD模拟的电场

    Table 2.  The electric fields for the transmission line model and FDTD simulation based on experimental currents.

    峰值电流/kA 距离/m 电场/(kV·m–1)
    方法 $i_{\text{p}}^{{\text{min}}}$ $i_{\text{p}}^{{\text{max}}}$ D TL model FDTD
    Erad1)c Erad2)c Ez Er
    本文工作
    benwen
    gongzuo
    25.6 30.9 38 18.2—21.9 33.6—40.7
    58 11.9—14.4 22.0—26.7 10.1—12.0 0.9—1.0
    78 8.8—10.7 16.4—19.8
    90 7.7—9.2 14.2—17.2
    102 6.7—8.2 12.5—15.1
    1000 0.4—0.7 1.3—1.5
    1600 0.4—0.5 0.8—0.9
    2200 0.3—0.4 0.6—0.7
    Cai 2021a 12.0 23.6 58 12.6—35.7
    Qie 2007b 11.9 60 18.0
    注: a, b引自文献[41]与[44]. c ν1=1.3e8 m/s; d ν2=2.5e8 m/s.
    下载: 导出CSV

    表 1  触发闪电特征谱线的光谱参数[43]

    Table 1.  Spectral parameters of characteristic spectral lines for triggered lightning[43].

    波长/nm 跃迁率 $ {E}_{k}/{{\mathrm{c}}{\mathrm{m}}}^{-1} $ 谱线跃迁
    上能级 下能级
    N I 493.5 1.76[6] 106, 477 2s22p2(3P)4p 2P1/2 2s22p2(3P)3s 2P3/2
    N I 528.1 2.45[5] 107, 037 2s22p2(3P)4p 4P1/2 2s2p4 4P5/2
    N II 417.6 1.21[8] 210, 732 2s22p4f F(5/2)3 2s22p3d 1D2
    N II 447.8 6.44[6] 188, 909 2s22p3d 3P1 2s22p3d 1D2
    N II 498.7 6.98[7] 188, 937 2s22p3d 3P0 2s22p3p 3S1
    N II 524.1 6.2[5] 221, 246 2s22p5d 1P1 2s22p4p 1P1
    N II 568.0 1.78[7] 166, 521 2s22p3p 3D1 2s22p3s 3P2
    下载: 导出CSV

    表 3  FDTD模拟、偶极子方法和电荷-磁场极限估算得到的磁场

    Table 3.  Magnetic field obtained from FDTD simulation, dipole method, and charge-magnetic field limit estimation.

    实验峰值电流/kA距离/m磁场/μT
    方法$i_{\text{p}}^{{\text{min}}}$$i_{\text{p}}^{{\text{max}}}$DFDTD偶极子方法BQ估算

    本文
    25.630.93895.3—115.3
    5882.6—98.569.8—84.362.4—75.5
    7846.4—56.2
    9068.1—77.044.6—53.840.2—48.7
    10235.5—42.9
    10003.6—4.4
    16002.3—2.82.3—2.72.3—2.8
    22001.6—2.0
    Cai 2020[2]13.058137.8
    9084.9
    16001.4
    Qie 2006[8]28.16066.3
    下载: 导出CSV
  • [1]

    An Y Y, Shen X Z, Yuan P, Wu Z W 2023 Appl. Phys. Lett. 133 17

    [2]

    Cai L, Li J, Wang J G, Zhou M, Xu F, Li Q X 2020 IEEE Trans. Electromagn. Compat. 63 811

    [3]

    Dong C X, Yuan P, Cen J Y, Wang X J, Mu Y L 2016 Atmos. Res. 178 1

    [4]

    Yuan Y M, Shen X Z, Wang H Y, Zhang H M, Zhang Y J, Wang C M, An Y Y, Su M L 2022 Phys. Lett. A 452 128445Google Scholar

    [5]

    Zhang Q L, Qie X S, Wang Z H, Zhang T L, Yang J 2009 Radio Sci. 44 1

    [6]

    Zhang Y J, Yang S J, Lu W T, Zheng D, Dong W S, Li B, Chen S D, Zhang Y, Chen L W 2014 Atmos. Res. 135 330

    [7]

    Cai L, Li J, Wang J G, Zhou M, Li Q X, Fan Y D 2021 High Volt. 6 337Google Scholar

    [8]

    Yang J, Qie X S, Zhang G S, Wang H B 2008 Radio Sci. 43 1

    [9]

    Pokharel R K, Ishii M, Baba Y 2003 IEEE Trans. Electromagn. Compat. 45 651Google Scholar

    [10]

    Shen X Z, Su M L, Zhang H M, Gao Z G, Xu Y, Wei F 2024 Phys. Plasmas 31 103508Google Scholar

    [11]

    Rubenstein M, Rachidi F, Uman M A, Thottappillil R, Rakov V A Nucci C A 1995 J. Geophys. Ress D: Atmos. 100 8863Google Scholar

    [12]

    Schoene J, Uman M A, Rakov V A, Kodali V, Rambo K J, Schnetzer G H 2003 J. Geophys. Res. D: Atmos. 108(D6) 4192

    [13]

    Li X, Lu G P, Fan Y F, Jiang R B, Zhang H B, Li D S, Liu M Y, Wang Y P, Ren H 2018 J. Geophys. Res. D: Atmos. 124 3168

    [14]

    Yee K 1966 IEEE Trans. Antennas Propag. 14 302Google Scholar

    [15]

    Cheng L, Zhu G X, Liu G N, Zhu L Q 2020 Mater. Res. Express 7 125009Google Scholar

    [16]

    Piltyay S, Bulashenko A, Herhil Y, Bulashenko O 2021 IEEE 2nd International Conference on Advanced Trends in Information Theory Kyiv, Ukraine, November 25-27 2020, pp357—363

    [17]

    Su M L, Shen X Z, Wang H Y, Zhang H M, Yuan Y M, An Y Y 2023 Chem. Phys. Lett. 826 140664Google Scholar

    [18]

    Shen X Z, Li J G, Jönsson P, Wang J G 2015 Astrophys. J. 801 129Google Scholar

    [19]

    申晓志, 袁萍, 李冀光, 董晨钟, 颉录有, 师应龙 2007 物理学报 10 5715Google Scholar

    Shen X Z, Yuan P, Li J G, Dong C Z, Ji L L, Shi Y L 2007 Acta Phys. Sin. 10 5715Google Scholar

    [20]

    申晓志, 袁萍, 王杰, 郭逸潇, 乔红贞, 赵学燕 2010 物理学报 7 4066

    Shen X Z, Yuan P, Wang J, Guo X Y, Qiao H Z, Zhao X Y 2008 Acta Phys. Sin. 7 4066

    [21]

    Shen X Z, Yuan P, Liu J 2010 Chin. Phys. B 19 053101Google Scholar

    [22]

    Shen X Z, Liu J, Zhou F Y 2016 Mon. Not. R. Astron. Soc. 462 1203Google Scholar

    [23]

    Shen X Z, Liu J, Sang C C, Jönsson P 2018 Phys. Rev. A 97 012510Google Scholar

    [24]

    Zhang X Y, Shen X Z, Yan P, Feng H 2020 Phys. Rev. A 102 042824Google Scholar

    [25]

    邱德仁 2002 原子光谱分析(上海: 复旦大学出版社) 第63—64页

    Qiu D R 2002 Atomic Spectrometry Analysis (Shanghai: Fudan University Press) pp63—64

    [26]

    Liu J, Shen X Z, Wang K, Sang C C 2020 J. Chem. Phys. 152 204303Google Scholar

    [27]

    D’angola A, Colonna G, Gorse C, Capitell M 2011 Eur. Phys. J. D 65 453Google Scholar

    [28]

    Devoto R S 1967 Phys. Fluids 10 2105Google Scholar

    [29]

    D’angola A, Colonna G, Gorse C, Capitell M 2008 Eur. Phys. J. D 46 129Google Scholar

    [30]

    Larsson A, Lalande P, Bondiou-Clergerie A, Lalande P, Delannoy A 2000 J. Phys. D: Appl. Phys. 33 1866Google Scholar

    [31]

    马文蔚, 周雨清, 解希顺 2016 物理学教程(下册) (北京: 高等教育出版社) 第49页

    Ma W W, Zhou Y Q, Xie X S 2016 A Course in Physics(Vol. 2) (Beijing: Higher Education Press) p49

    [32]

    Rakov V A 1998 J. Geophys. Res. D: Atmos. 103(D2) 1879

    [33]

    Yang C, Zhou B 2004 IEEE IEEE Trans. Electromagn. Compat. 46 133Google Scholar

    [34]

    Rakov V A 1997 Proc. 12th Int. Zurich Symp. Electromagn. Compat Gainesville, FL, USA February 18-20, 1997 pp59—64

    [35]

    Bruce C E R, Golde R H 1941 J. Inst. Electr. Eng. -Part II: Power Eng. 88 487

    [36]

    Uman M A, McLain D K 1969 J. Geophys. Res. 74 6899Google Scholar

    [37]

    Heidler F 1985 6th Symposium and Technical Exhibition on Electromagnetic Compatibility Zurich, Switzerland March 5-7, 1985 pp157—162

    [38]

    Diendorfer G, Uman M 1990 J. Geophys. Res. D: Atmos. 95 13621Google Scholar

    [39]

    Shen X, Xu Y, Liu M, Zhang H M, Wang H Y 2025 J. Opt. Soc. Am. B: Opt. Phys. 42 773Google Scholar

    [40]

    Rubinstein M, Uman M A 1989 IEEE Trans. Electromagn. Compat. 31 183Google Scholar

    [41]

    Cai L, Hu Q, Wang J G, Zou X, Li Q X, Fan Y D 2021 J. Electrostat. 109 103537Google Scholar

    [42]

    Wei F, Shen X Z, Yuan P, An T T, An Y Y, Su M L 2024 J. Opt. Soc. Am. B: Opt. Phys. 41 2033Google Scholar

    [43]

    Kramida, A. , Ralchenko, Yu. , Reader, J. , and NIST ASD Team (2024). NIST Atomic Spectra Database (ver. 5.12), [Online]. [2025, April 1]. National Institute of Standards and Technology, Gaithersburg, MD.

    [44]

    Qie X S, Zhang Q L, Zhou Y J, Feng G L, Zhang T L, Yang J, Kong X Z, Xiao Q F, Wu S J 2007 Sci. China Earth Sci. 50 1241Google Scholar

  • [1] 田文静, 杨宗谕, 许敏, 龙婷, 何小雪, 柯锐, 杨硕苏, 余德良, 石中兵, 高喆. 光谱诊断中神经网络快速分析模型及外推方法. 物理学报, doi: 10.7498/aps.74.20241739
    [2] 沈元毅, 雷鹏, 王新兵, 左都罗. He/Ar/Kr光泵稀有气体激光介质中的Ar-Kr共振能量转移. 物理学报, doi: 10.7498/aps.72.20230956
    [3] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法. 物理学报, doi: 10.7498/aps.72.20231313
    [4] 刘国荣, 朱维君, 褚润通, 王伟, 袁萍, 安婷婷, 万瑞斌, 孙对兄, 马云云, 郭志艳. 依据不同波段光谱诊断闪电回击通道温度. 物理学报, doi: 10.7498/aps.71.20211673
    [5] 叶志红, 张杰, 周健健, 苟丹. 有耗介质层上多导体传输线的电磁耦合时域分析方法. 物理学报, doi: 10.7498/aps.69.20191214
    [6] 李书磊, 邱实, 石立华, 李云, 段艳涛. 基于正交传播算子的闪电宽带甚高频辐射源定位方法研究. 物理学报, doi: 10.7498/aps.68.20190522
    [7] 梁亦寒, 胡广月, 袁鹏, 王雨林, 赵斌, 宋法伦, 陆全明, 郑坚. 纳秒激光烧蚀固体靶产生的等离子体在外加横向磁场中膨胀时的温度和密度参数演化. 物理学报, doi: 10.7498/aps.64.125204
    [8] 王飞, 魏兵, 杨谦, 李林茜. 基于Newmark算法的任意磁化方向铁氧体电磁散射时域有限差分分析. 物理学报, doi: 10.7498/aps.63.164101
    [9] 王飞, 魏兵, 李林茜. 色散介质电磁特性时域有限差分分析的Newmark方法. 物理学报, doi: 10.7498/aps.63.104101
    [10] 杨利霞, 马辉, 施卫东, 施丽娟, 于萍萍. 基于表面阻抗边界条件的等离子体薄涂层电磁散射的时域有限差分分析. 物理学报, doi: 10.7498/aps.62.034102
    [11] 王飞, 魏兵. 电各向异性色散介质电磁散射时域有限差分分析的半解析递推卷积方法. 物理学报, doi: 10.7498/aps.62.044101
    [12] 王飞, 魏兵. 任意磁化方向铁氧体电磁散射时域有限差分分析的Z变换方法. 物理学报, doi: 10.7498/aps.62.084106
    [13] 王彩霞, 郄秀书, 蒋如斌, 杨静. 一次人工触发闪电上行正先导的传输特征. 物理学报, doi: 10.7498/aps.61.039203
    [14] 蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明远, 王俊芳, 刘冬霞, 潘伦湘. 峰值电流达几千安量级的闪电M分量放电特征及机理探讨. 物理学报, doi: 10.7498/aps.60.079201
    [15] 杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚. 斜入射分层线性各向异性等离子体电磁散射时域有限差分方法分析. 物理学报, doi: 10.7498/aps.59.6089
    [16] 赵阳, 郄秀书, 孔祥贞, 张广庶, 张彤, 杨静, 冯桂力, 张其林, 王东方. 人工触发闪电电流波形特征参数分析. 物理学报, doi: 10.7498/aps.58.6616
    [17] 杨利霞, 葛德彪, 赵跃华, 王 刚, 阎 述. 基于直接离散方式的磁化铁氧体材料电磁散射的时域有限差分方法分析. 物理学报, doi: 10.7498/aps.57.2936
    [18] 杨利霞, 葛德彪, 魏 兵. 电各向异性色散介质电磁散射的三维递推卷积-时域有限差分方法分析. 物理学报, doi: 10.7498/aps.56.4509
    [19] 杨利霞, 葛德彪, 王 刚, 阎 述. 磁化铁氧体材料电磁散射递推卷积-时域有限差分方法分析. 物理学报, doi: 10.7498/aps.56.6937
    [20] 吴奇学. 有旋电子在电磁场及二维谐振子场中运动的双波描述. 物理学报, doi: 10.7498/aps.49.2118
计量
  • 文章访问数:  365
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-06
  • 修回日期:  2025-05-01
  • 上网日期:  2025-05-13

/

返回文章
返回