-
利用无狭缝摄谱技术获取了中国广东一次人工触发闪电通道等离子体的光谱。基于光谱诊断方法确定了该触发闪电通道电流的最大值与最小值分别为30.9和25.6 kA,并采用线性电流衰减传输线模型(Modified Transmission Line with Linear Current Decay,简记为MTLL)对电流进行了模拟。在此基础上,采用时域有限差分方法(Finite-Difference Time-Domain,简记为FDTD)和传输线模型研究了不同距离处的电场分布特征,并对58 m处产生的电场进了比较。结果发现:当回击速度取1.3×108m/s时,辐射电场与实验垂直电场偏差较大,但与FDTD方法模拟的垂直电场符合一致。进一步地,采用FDTD方法、偶极子方法、电荷-磁场极限估算法研究了58 m、90 m、1.6 km的磁场分布。与实验数据比较发现:不同计算方法与实验值在58和90 m处有一定差异,但在1.6 km处符合一致。The channel plasma characteristics of an artificially triggered lightning in Guangdong, China, were analyzed using slit-free spectroscopy technology. Spectral diagnostics were performed to obtain the peak currents by about 30.9 kA (maximum) and 25.6 kA (minimum), which were subsequently simulated using the Modified Transmission Line model with Linear current decay (MTLL). To investigate the electric field distribution, the Finite-Difference Time-Domain (FDTD) method and Transmission Line (TL) model were employed. At a distance of 58 m, the TL-predicted radiation electric field deviates from experimental electric field when assuming a return stroke velocity of 1.3×108m/s, but becomes close alignment with the FDTD-simulation of vertical electric fields. Moreover, the analysis of magnetic fields at 58 m, 90 m, and 1.6 km were compared using FDTD simulations, Dipole approximations, and Charge Magnetic Field Limit (CMFL) estimations. The discrepancies between calculated and experimental values are appeared at 58 m and 90 m, probably due to the near-field interference and measurement limitation. However, they become small at 1.6 km.This work is helpful for the study of lightning electromagnetic field properties and spectral diagnosis.
-
Keywords:
- Artificially triggered lightning /
- Spectroscopic diagnostics /
- FDTD method /
- Channel current /
- Electromagnetic field
-
[1] An Y Y, Shen X Z, Yuan P, Wu Z W 2023 Appl. Phys. Lett. 133 17
[2] Cai L, Li J, Wang J G, Zhou M, Xu F, Li Q X 2020IEEE Trans. Electromagn. Compat. 63 811
[3] Dong C X, Yuan P, Cen J Y, Wang X J, Mu Y L 2016Atmos. Res. 178 1
[4] Yuan Y M, Shen X Z, Wang H Y, Zhang H M, Zhang Y J, Wang C M, An Y Y, Su M L 2022Phys. Lett. A 452 128445
[5] Zhang Q L, Qie X S, Wang Z H, Zhang T L, Yang J 2009Radio Sci. 44 1
[6] Zhang Y J, Yang S J, Lu W T, Zheng D, Dong W S, Li B, Chen S D, Zhang Y, Chen L W 2014Atmos. Res. 135 330
[7] Cai L, Li J, Wang J G, Zhou M, Li Q X, Fan Y D 2021High Volt. 6 337
[8] Yang J, Qie X S, Zhang G S, Wang H B 2008Radio Sci. 43 1
[9] Pokharel R K, Ishii M, Baba Y 2003IEEE Trans. Electromagn. Compat. 45 651
[10] Shen X Z, Su M L, Zhang H M, Gao Z G, Xu Y, Wei F 2024Phys. Plasmas 31 103508
[11] Rubenstein M, Rachidi F, Uman M A, Thottappillil R, Rakov V A Nucci C A 1995Journal of Geophysical Research: Atmospheres 100 8863
[12] Schoene J, Uman M A, Rakov V A, Kodali V, Rambo K J, Schnetzer G H 2003Journal of Geophysical Research: Atmospheres 108(D6) 4192
[13] Li X, Lu G P, Fan Y F, Jiang R B, Zhang H B, Li D S, Liu M Y, Wang Y P, Ren H 2018Journal of Geophysical Research: Atmospheres 124 3168
[14] Yee K 1966IEEE Trans. Antennas Propag. 14 302
[15] Cheng L, Zhu G X, Liu G N, Zhu L Q 2020Materials Research Express 7 125009
[16] Piltyay S, Bulashenko A, Herhil Y, Bulashenko O 2021 IEEE 2nd International Conference on Advanced Trends in Information Theory Kyiv, Ukraine,November 25-272020, p357-363
[17] Su M L, Shen X Z, Wang H Y, Zhang H M, Yuan Y M, An Y Y 2023Chem. Phys. Lett. 826 140664
[18] Shen X Z, Li J G, Jönsson P, Wang J G 2015Astrophys. J 801 129
[19] Shen X Z, Yuan P, Li J G, Dong C Z, Ji L L, Shi Y L 2007Acta Phys. Sin 10 5715(in Chinese)[申晓志,袁萍,李冀光,董晨钟,颉录有,师应龙2007物理学报10 5715]
[20] Shen X Z, Yuan P, Wang J, Guo X Y, Qiao H Z, Zhao X Y 2008Acta Phys. Sin 7 4066(in Chinese)[申晓志, 袁萍, 王杰, 郭逸潇, 乔红贞, 赵学燕2010物理学报7 4066]
[21] Shen X Z, Yuan P, LiU J 2010Chin. Phys. B 19(05) 223
[22] Shen X Z, Liu J, Zhou F Y 2016Mon. Not. R. Astron.l Soc. 462 1203
[23] Shen X Z, Liu J, Sang C C, Jönsson P 2018Phys. Rev. A 97 012510
[24] Zhang X Y, Shen X Z, Yyan P, Feng H 2020Phys. Rev. A 102 042824.
[25] Qiu D R 2002Atomic Spectrometry Analysis (Shanghai: Fudan University Press)p63-64(in Chinese)[邱德仁2002原子光谱分析(上海:复旦大学出版社)第63-64页]
[26] Liu J, Shen X Z, Wang K, Sang C C 2020Journal of Chemical Physics 152 204303
[27] D’angola A, Colonna G, Gorse C, Capitell M 2011Eur. Phys. J. D 65453
[28] Devoto R S 1967Physics of Fluids 10 2105
[29] D’angola A, Colonna G, Gorse C, Capitell M 2008Eur. Phys. J. D 46129
[30] Larsson A, Lalande P, Bondiou-Clergerie A, Lalande P, Delannoy A 2000J. Phys. D: Appl. Phys. 33 1866.
[31] Ma W W, Zhou Y Q, Xie X S 2016A Course in Physics(Vol.2) (Beijing:Higher Education Press)p49(in Chinese) [马文蔚,周雨清,解希顺2016物理学教程(下册)(北京:高等教育出版社)第49页]
[32] Rakov V A 1998Journal of Geophysical Research: Atmospheres 103(D2) 1879
[33] Yang C, Zhou B 2004IEEE IEEE Trans. Electromagn. Compat. 46133
[34] Rakov V A 1997Proc.12th Int. Zurich Symp. Electromagn. Compat Gainesville, FL, USA February 18-20,1997 p59-64.
[35] Bruce C E R, Golde R H 1941Journal of the Institution of Electrical Engineers-Part II: Power Engineering 88 487
[36] Uman M A, McLain D K 1969J. Geophys. Res. 74 6899
[37] Heidler F 19856th Symposium and Technical Exhibition on Electromagnetic Compatibility Zurich, Switzerland March 5-71985 p157-162
[38] Diendorfer G, Uman M 1990Journal of Geophysical Research: Atmospheres 9513621
[39] Shen X, Xu Y, Liu M, Zhang H M, Wang H Y 2025J. Opt. Soc. Am. B 42 773
[40] Rubinstein M, Uman M A 1989IEEE Trans. Electromagn. Compat. 31 183
[41] Cai L, Hu Q, Wang J G, Zou X, Li Q X, Fan Y D 2021Journal of Electrostatics 109 103537
[42] Wei F, Shen X Z, Yuan P, An T T, An Y Y, Su M L 2024 J. Opt. Soc. Am. B 41 2033
[43] Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2024). NIST Atomic Spectra Database (ver. 5.12), [Online]. [2025, April 1]. National Institute of Standards and Technology, Gaithersburg, MD.
[44] Qie X S, Zhang Q L, Zhou Y J, Feng G L, Zhang T L, Yang J, Kong X Z, Xiao Q F, Wu S J 2007Sci. China Earth Sci. 50 1241
计量
- 文章访问数: 9
- PDF下载量: 0
- 被引次数: 0