-
利用无狭缝摄谱技术获取了中国广东一次人工触发闪电通道等离子体的光谱. 基于光谱诊断方法确定了该触发闪电通道电流的最大值与最小值分别为30.9 kA和25.6 kA, 并采用线性电流衰减传输线模型(modified transmission line with linear current decay, MTLL)对电流进行了模拟. 在此基础上, 采用时域有限差分方法(finite-difference time-domain, FDTD)和传输线模型研究了不同距离处的电场分布特征, 并对58 m处产生的电场进了比较. 结果发现: 当回击速度取1.3×108 m/s时, 辐射电场与实验垂直电场偏差较大, 但与FDTD方法模拟的垂直电场符合一致. 进一步, 采用FDTD方法、偶极子方法、电荷-磁场极限估算法研究了58 m, 90 m, 1.6 km的磁场分布. 与实验数据比较发现: 不同计算方法与实验值在58 m和90 m处有一定差异, 但在1.6 km处符合一致.The channel plasma characteristics of an artificially triggered lightning in Guangdong, China, are analyzed using slit-free spectroscopy technology. Based on spectral diagnostic methods, the maximum and minimum values of the triggered lightning channel current are determined to be about 30.9 kA and 25.6 kA (minimum), respectively, and the current is simulated using a modified transmission line model with linear current decay (MTLL). To investigate the electric field distribution, the finite-difference time-domain (FDTD) method and transmission line (TL) model are employed. At a distance of 58 m, assuming a return stroke velocity of 1.3 × 108 m/s, the TL-predicted radiation electric field deviates from experimental electric field, but is very close to the FDTD-simulation of the vertical electric field. Moreover, the analyses of magnetic fields at 58 m, 90 m, and 1.6 km are compared using FDTD simulations, dipole approximation, and charge magnetic field limit (CMFL) estimation. The discrepancies between calculated value and experimental values appear at 58 m and 90 m, which may be due to the near-field interference and measurement limitation. However, they become small at 1.6 km. This work is helpful for the study of lightning electromagnetic field properties and spectral diagnosis.
-
Keywords:
- artificially triggered lightning /
- spectroscopic diagnostics /
- finite-difference time-domain (FDTD) method /
- channel current /
- electromagnetic field
-
图 1 (a) 触发闪电测量装置示意图; (b) 触发闪电的实验场地; (c) 触发闪电通道示意图; (d) 数值计算模型. $\otimes $表示垂直指向纸上
Fig. 1. (a) Schematic diagram of triggering lightning measurement device; (b) the experimental site; (c) schematic diagram of lightning channel; (d) numerical calculation model. $\otimes $: pointing vertically towards the paper.
图 3 电流测量过程. X, Y, Z轴对应于电导率、通道半径、电流. 通道半径和电导率的交点位置对应的电流即为测量电流. Exp.Shen 2024引自文献[9]
Fig. 3. Measurement process of Current. X, Y and Z axes correspond to electron conductivity, channel radius, and current. The current corresponding to the intersection of channel radius and electron conductivity is the measured current. Exp. Shen 2024 cites from Ref.[9].
表 2 基于实验电流得到的传输线模型和FDTD模拟的电场
Table 2. The electric fields for the transmission line model and FDTD simulation based on experimental currents.
峰值电流/kA 距离/m 电场/(kV·m–1) 方法 $i_{\text{p}}^{{\text{min}}}$ $i_{\text{p}}^{{\text{max}}}$ D TL model FDTD Erad (ν1)c Erad (ν2)c Ez Er 本文工作
benwen
gongzuo25.6 30.9 38 18.2—21.9 33.6—40.7 58 11.9—14.4 22.0—26.7 10.1—12.0 0.9—1.0 78 8.8—10.7 16.4—19.8 90 7.7—9.2 14.2—17.2 102 6.7—8.2 12.5—15.1 1000 0.4—0.7 1.3—1.5 1600 0.4—0.5 0.8—0.9 2200 0.3—0.4 0.6—0.7 Cai 2021a 12.0 23.6 58 12.6—35.7 Qie 2007b 11.9 60 18.0 注: a, b引自文献[41]与[44]. c ν1=1.3e8 m/s; d ν2=2.5e8 m/s. 表 1 触发闪电特征谱线的光谱参数[43]
Table 1. Spectral parameters of characteristic spectral lines for triggered lightning[43].
波长/nm 跃迁率 $ {E}_{k}/{{\mathrm{c}}{\mathrm{m}}}^{-1} $ 谱线跃迁 上能级 下能级 N I 493.5 1.76[6] 106, 477 2s22p2(3P)4p 2P○1/2 2s22p2(3P)3s 2P3/2 N I 528.1 2.45[5] 107, 037 2s22p2(3P)4p 4P○1/2 2s2p4 4P5/2 N II 417.6 1.21[8] 210, 732 2s22p4f F(5/2)3 2s22p3d 1D○2 N II 447.8 6.44[6] 188, 909 2s22p3d 3P○1 2s22p3d 1D○2 N II 498.7 6.98[7] 188, 937 2s22p3d 3P○0 2s22p3p 3S1 N II 524.1 6.2[5] 221, 246 2s22p5d 1P○1 2s22p4p 1P1 N II 568.0 1.78[7] 166, 521 2s22p3p 3D1 2s22p3s 3P○2 表 3 FDTD模拟、偶极子方法和电荷-磁场极限估算得到的磁场
Table 3. Magnetic field obtained from FDTD simulation, dipole method, and charge-magnetic field limit estimation.
-
[1] An Y Y, Shen X Z, Yuan P, Wu Z W 2023 Appl. Phys. Lett. 133 17
[2] Cai L, Li J, Wang J G, Zhou M, Xu F, Li Q X 2020 IEEE Trans. Electromagn. Compat. 63 811
[3] Dong C X, Yuan P, Cen J Y, Wang X J, Mu Y L 2016 Atmos. Res. 178 1
[4] Yuan Y M, Shen X Z, Wang H Y, Zhang H M, Zhang Y J, Wang C M, An Y Y, Su M L 2022 Phys. Lett. A 452 128445
Google Scholar
[5] Zhang Q L, Qie X S, Wang Z H, Zhang T L, Yang J 2009 Radio Sci. 44 1
[6] Zhang Y J, Yang S J, Lu W T, Zheng D, Dong W S, Li B, Chen S D, Zhang Y, Chen L W 2014 Atmos. Res. 135 330
[7] Cai L, Li J, Wang J G, Zhou M, Li Q X, Fan Y D 2021 High Volt. 6 337
Google Scholar
[8] Yang J, Qie X S, Zhang G S, Wang H B 2008 Radio Sci. 43 1
[9] Pokharel R K, Ishii M, Baba Y 2003 IEEE Trans. Electromagn. Compat. 45 651
Google Scholar
[10] Shen X Z, Su M L, Zhang H M, Gao Z G, Xu Y, Wei F 2024 Phys. Plasmas 31 103508
Google Scholar
[11] Rubenstein M, Rachidi F, Uman M A, Thottappillil R, Rakov V A Nucci C A 1995 J. Geophys. Ress D: Atmos. 100 8863
Google Scholar
[12] Schoene J, Uman M A, Rakov V A, Kodali V, Rambo K J, Schnetzer G H 2003 J. Geophys. Res. D: Atmos. 108(D6) 4192
[13] Li X, Lu G P, Fan Y F, Jiang R B, Zhang H B, Li D S, Liu M Y, Wang Y P, Ren H 2018 J. Geophys. Res. D: Atmos. 124 3168
[14] Yee K 1966 IEEE Trans. Antennas Propag. 14 302
Google Scholar
[15] Cheng L, Zhu G X, Liu G N, Zhu L Q 2020 Mater. Res. Express 7 125009
Google Scholar
[16] Piltyay S, Bulashenko A, Herhil Y, Bulashenko O 2021 IEEE 2nd International Conference on Advanced Trends in Information Theory Kyiv, Ukraine, November 25-27 2020, pp357—363
[17] Su M L, Shen X Z, Wang H Y, Zhang H M, Yuan Y M, An Y Y 2023 Chem. Phys. Lett. 826 140664
Google Scholar
[18] Shen X Z, Li J G, Jönsson P, Wang J G 2015 Astrophys. J. 801 129
Google Scholar
[19] 申晓志, 袁萍, 李冀光, 董晨钟, 颉录有, 师应龙 2007 物理学报 10 5715
Google Scholar
Shen X Z, Yuan P, Li J G, Dong C Z, Ji L L, Shi Y L 2007 Acta Phys. Sin. 10 5715
Google Scholar
[20] 申晓志, 袁萍, 王杰, 郭逸潇, 乔红贞, 赵学燕 2010 物理学报 7 4066
Shen X Z, Yuan P, Wang J, Guo X Y, Qiao H Z, Zhao X Y 2008 Acta Phys. Sin. 7 4066
[21] Shen X Z, Yuan P, Liu J 2010 Chin. Phys. B 19 053101
Google Scholar
[22] Shen X Z, Liu J, Zhou F Y 2016 Mon. Not. R. Astron. Soc. 462 1203
Google Scholar
[23] Shen X Z, Liu J, Sang C C, Jönsson P 2018 Phys. Rev. A 97 012510
Google Scholar
[24] Zhang X Y, Shen X Z, Yan P, Feng H 2020 Phys. Rev. A 102 042824
Google Scholar
[25] 邱德仁 2002 原子光谱分析(上海: 复旦大学出版社) 第63—64页
Qiu D R 2002 Atomic Spectrometry Analysis (Shanghai: Fudan University Press) pp63—64
[26] Liu J, Shen X Z, Wang K, Sang C C 2020 J. Chem. Phys. 152 204303
Google Scholar
[27] D’angola A, Colonna G, Gorse C, Capitell M 2011 Eur. Phys. J. D 65 453
Google Scholar
[28] Devoto R S 1967 Phys. Fluids 10 2105
Google Scholar
[29] D’angola A, Colonna G, Gorse C, Capitell M 2008 Eur. Phys. J. D 46 129
Google Scholar
[30] Larsson A, Lalande P, Bondiou-Clergerie A, Lalande P, Delannoy A 2000 J. Phys. D: Appl. Phys. 33 1866
Google Scholar
[31] 马文蔚, 周雨清, 解希顺 2016 物理学教程(下册) (北京: 高等教育出版社) 第49页
Ma W W, Zhou Y Q, Xie X S 2016 A Course in Physics(Vol. 2) (Beijing: Higher Education Press) p49
[32] Rakov V A 1998 J. Geophys. Res. D: Atmos. 103(D2) 1879
[33] Yang C, Zhou B 2004 IEEE IEEE Trans. Electromagn. Compat. 46 133
Google Scholar
[34] Rakov V A 1997 Proc. 12th Int. Zurich Symp. Electromagn. Compat Gainesville, FL, USA February 18-20, 1997 pp59—64
[35] Bruce C E R, Golde R H 1941 J. Inst. Electr. Eng. -Part II: Power Eng. 88 487
[36] Uman M A, McLain D K 1969 J. Geophys. Res. 74 6899
Google Scholar
[37] Heidler F 1985 6th Symposium and Technical Exhibition on Electromagnetic Compatibility Zurich, Switzerland March 5-7, 1985 pp157—162
[38] Diendorfer G, Uman M 1990 J. Geophys. Res. D: Atmos. 95 13621
Google Scholar
[39] Shen X, Xu Y, Liu M, Zhang H M, Wang H Y 2025 J. Opt. Soc. Am. B: Opt. Phys. 42 773
Google Scholar
[40] Rubinstein M, Uman M A 1989 IEEE Trans. Electromagn. Compat. 31 183
Google Scholar
[41] Cai L, Hu Q, Wang J G, Zou X, Li Q X, Fan Y D 2021 J. Electrostat. 109 103537
Google Scholar
[42] Wei F, Shen X Z, Yuan P, An T T, An Y Y, Su M L 2024 J. Opt. Soc. Am. B: Opt. Phys. 41 2033
Google Scholar
[43] Kramida, A. , Ralchenko, Yu. , Reader, J. , and NIST ASD Team (2024). NIST Atomic Spectra Database (ver. 5.12), [Online]. [2025, April 1]. National Institute of Standards and Technology, Gaithersburg, MD.
[44] Qie X S, Zhang Q L, Zhou Y J, Feng G L, Zhang T L, Yang J, Kong X Z, Xiao Q F, Wu S J 2007 Sci. China Earth Sci. 50 1241
Google Scholar
计量
- 文章访问数: 365
- PDF下载量: 8
- 被引次数: 0