搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光谱诊断和FDTD方法计算触发闪电电流与电磁场

索煜航 申晓志 齐奇 张华明

引用本文:
Citation:

基于光谱诊断和FDTD方法计算触发闪电电流与电磁场

索煜航, 申晓志, 齐奇, 张华明

Calculation of Current and Electromagnetic Fields in Triggered Lightning Based on Spectral Diagnosis and FDTD Method

Yuhang Suo, Xiaozhi Shen, Qi Qi, Huaming Zhang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 利用无狭缝摄谱技术获取了中国广东一次人工触发闪电通道等离子体的光谱。基于光谱诊断方法确定了该触发闪电通道电流的最大值与最小值分别为30.9和25.6 kA,并采用线性电流衰减传输线模型(Modified Transmission Line with Linear Current Decay,简记为MTLL)对电流进行了模拟。在此基础上,采用时域有限差分方法(Finite-Difference Time-Domain,简记为FDTD)和传输线模型研究了不同距离处的电场分布特征,并对58 m处产生的电场进了比较。结果发现:当回击速度取1.3×108m/s时,辐射电场与实验垂直电场偏差较大,但与FDTD方法模拟的垂直电场符合一致。进一步地,采用FDTD方法、偶极子方法、电荷-磁场极限估算法研究了58 m、90 m、1.6 km的磁场分布。与实验数据比较发现:不同计算方法与实验值在58和90 m处有一定差异,但在1.6 km处符合一致。
    The channel plasma characteristics of an artificially triggered lightning in Guangdong, China, were analyzed using slit-free spectroscopy technology. Spectral diagnostics were performed to obtain the peak currents by about 30.9 kA (maximum) and 25.6 kA (minimum), which were subsequently simulated using the Modified Transmission Line model with Linear current decay (MTLL). To investigate the electric field distribution, the Finite-Difference Time-Domain (FDTD) method and Transmission Line (TL) model were employed. At a distance of 58 m, the TL-predicted radiation electric field deviates from experimental electric field when assuming a return stroke velocity of 1.3×108m/s, but becomes close alignment with the FDTD-simulation of vertical electric fields. Moreover, the analysis of magnetic fields at 58 m, 90 m, and 1.6 km were compared using FDTD simulations, Dipole approximations, and Charge Magnetic Field Limit (CMFL) estimations. The discrepancies between calculated and experimental values are appeared at 58 m and 90 m, probably due to the near-field interference and measurement limitation. However, they become small at 1.6 km.This work is helpful for the study of lightning electromagnetic field properties and spectral diagnosis.
  • [1]

    An Y Y, Shen X Z, Yuan P, Wu Z W 2023 Appl. Phys. Lett. 133 17

    [2]

    Cai L, Li J, Wang J G, Zhou M, Xu F, Li Q X 2020IEEE Trans. Electromagn. Compat. 63 811

    [3]

    Dong C X, Yuan P, Cen J Y, Wang X J, Mu Y L 2016Atmos. Res. 178 1

    [4]

    Yuan Y M, Shen X Z, Wang H Y, Zhang H M, Zhang Y J, Wang C M, An Y Y, Su M L 2022Phys. Lett. A 452 128445

    [5]

    Zhang Q L, Qie X S, Wang Z H, Zhang T L, Yang J 2009Radio Sci. 44 1

    [6]

    Zhang Y J, Yang S J, Lu W T, Zheng D, Dong W S, Li B, Chen S D, Zhang Y, Chen L W 2014Atmos. Res. 135 330

    [7]

    Cai L, Li J, Wang J G, Zhou M, Li Q X, Fan Y D 2021High Volt. 6 337

    [8]

    Yang J, Qie X S, Zhang G S, Wang H B 2008Radio Sci. 43 1

    [9]

    Pokharel R K, Ishii M, Baba Y 2003IEEE Trans. Electromagn. Compat. 45 651

    [10]

    Shen X Z, Su M L, Zhang H M, Gao Z G, Xu Y, Wei F 2024Phys. Plasmas 31 103508

    [11]

    Rubenstein M, Rachidi F, Uman M A, Thottappillil R, Rakov V A Nucci C A 1995Journal of Geophysical Research: Atmospheres 100 8863

    [12]

    Schoene J, Uman M A, Rakov V A, Kodali V, Rambo K J, Schnetzer G H 2003Journal of Geophysical Research: Atmospheres 108(D6) 4192

    [13]

    Li X, Lu G P, Fan Y F, Jiang R B, Zhang H B, Li D S, Liu M Y, Wang Y P, Ren H 2018Journal of Geophysical Research: Atmospheres 124 3168

    [14]

    Yee K 1966IEEE Trans. Antennas Propag. 14 302

    [15]

    Cheng L, Zhu G X, Liu G N, Zhu L Q 2020Materials Research Express 7 125009

    [16]

    Piltyay S, Bulashenko A, Herhil Y, Bulashenko O 2021 IEEE 2nd International Conference on Advanced Trends in Information Theory Kyiv, Ukraine,November 25-272020, p357-363

    [17]

    Su M L, Shen X Z, Wang H Y, Zhang H M, Yuan Y M, An Y Y 2023Chem. Phys. Lett. 826 140664

    [18]

    Shen X Z, Li J G, Jönsson P, Wang J G 2015Astrophys. J 801 129

    [19]

    Shen X Z, Yuan P, Li J G, Dong C Z, Ji L L, Shi Y L 2007Acta Phys. Sin 10 5715(in Chinese)[申晓志,袁萍,李冀光,董晨钟,颉录有,师应龙2007物理学报10 5715]

    [20]

    Shen X Z, Yuan P, Wang J, Guo X Y, Qiao H Z, Zhao X Y 2008Acta Phys. Sin 7 4066(in Chinese)[申晓志, 袁萍, 王杰, 郭逸潇, 乔红贞, 赵学燕2010物理学报7 4066]

    [21]

    Shen X Z, Yuan P, LiU J 2010Chin. Phys. B 19(05) 223

    [22]

    Shen X Z, Liu J, Zhou F Y 2016Mon. Not. R. Astron.l Soc. 462 1203

    [23]

    Shen X Z, Liu J, Sang C C, Jönsson P 2018Phys. Rev. A 97 012510

    [24]

    Zhang X Y, Shen X Z, Yyan P, Feng H 2020Phys. Rev. A 102 042824.

    [25]

    Qiu D R 2002Atomic Spectrometry Analysis (Shanghai: Fudan University Press)p63-64(in Chinese)[邱德仁2002原子光谱分析(上海:复旦大学出版社)第63-64页]

    [26]

    Liu J, Shen X Z, Wang K, Sang C C 2020Journal of Chemical Physics 152 204303

    [27]

    D’angola A, Colonna G, Gorse C, Capitell M 2011Eur. Phys. J. D 65453

    [28]

    Devoto R S 1967Physics of Fluids 10 2105

    [29]

    D’angola A, Colonna G, Gorse C, Capitell M 2008Eur. Phys. J. D 46129

    [30]

    Larsson A, Lalande P, Bondiou-Clergerie A, Lalande P, Delannoy A 2000J. Phys. D: Appl. Phys. 33 1866.

    [31]

    Ma W W, Zhou Y Q, Xie X S 2016A Course in Physics(Vol.2) (Beijing:Higher Education Press)p49(in Chinese) [马文蔚,周雨清,解希顺2016物理学教程(下册)(北京:高等教育出版社)第49页]

    [32]

    Rakov V A 1998Journal of Geophysical Research: Atmospheres 103(D2) 1879

    [33]

    Yang C, Zhou B 2004IEEE IEEE Trans. Electromagn. Compat. 46133

    [34]

    Rakov V A 1997Proc.12th Int. Zurich Symp. Electromagn. Compat Gainesville, FL, USA February 18-20,1997 p59-64.

    [35]

    Bruce C E R, Golde R H 1941Journal of the Institution of Electrical Engineers-Part II: Power Engineering 88 487

    [36]

    Uman M A, McLain D K 1969J. Geophys. Res. 74 6899

    [37]

    Heidler F 19856th Symposium and Technical Exhibition on Electromagnetic Compatibility Zurich, Switzerland March 5-71985 p157-162

    [38]

    Diendorfer G, Uman M 1990Journal of Geophysical Research: Atmospheres 9513621

    [39]

    Shen X, Xu Y, Liu M, Zhang H M, Wang H Y 2025J. Opt. Soc. Am. B 42 773

    [40]

    Rubinstein M, Uman M A 1989IEEE Trans. Electromagn. Compat. 31 183

    [41]

    Cai L, Hu Q, Wang J G, Zou X, Li Q X, Fan Y D 2021Journal of Electrostatics 109 103537

    [42]

    Wei F, Shen X Z, Yuan P, An T T, An Y Y, Su M L 2024 J. Opt. Soc. Am. B 41 2033

    [43]

    Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2024). NIST Atomic Spectra Database (ver. 5.12), [Online]. [2025, April 1]. National Institute of Standards and Technology, Gaithersburg, MD.

    [44]

    Qie X S, Zhang Q L, Zhou Y J, Feng G L, Zhang T L, Yang J, Kong X Z, Xiao Q F, Wu S J 2007Sci. China Earth Sci. 50 1241

  • [1] 田文静, 杨宗谕, 许敏, 龙婷, 何小雪, 柯锐, 杨硕苏, 余德良, 石中兵, 高喆. 光谱诊断中神经网络快速分析模型及外推方法. 物理学报, doi: 10.7498/aps.74.20241739
    [2] 沈元毅, 雷鹏, 王新兵, 左都罗. He/Ar/Kr光泵稀有气体激光介质中的Ar-Kr共振能量转移. 物理学报, doi: 10.7498/aps.72.20230956
    [3] 刘坤, 项红甫, 周雄峰, 夏昊天, 李华. 固定功率下大气压交流氩气等离子体射流的光谱特性. 物理学报, doi: 10.7498/aps.72.20230307
    [4] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法. 物理学报, doi: 10.7498/aps.72.20231313
    [5] 殷佳鹏, 刘圣广. 用单发电子束探测激光等离子体内电磁场演化实验研究. 物理学报, doi: 10.7498/aps.71.20211374
    [6] 刘国荣, 朱维君, 褚润通, 王伟, 袁萍, 安婷婷, 万瑞斌, 孙对兄, 马云云, 郭志艳. 依据不同波段光谱诊断闪电回击通道温度. 物理学报, doi: 10.7498/aps.71.20211673
    [7] 安新磊, 乔帅, 张莉. 基于麦克斯韦电磁场理论的神经元动力学响应与隐藏放电控制. 物理学报, doi: 10.7498/aps.70.20201347
    [8] 王艳红, 王磊, 武京治. 神经微管振动产生纳米尺度内电磁场作用. 物理学报, doi: 10.7498/aps.70.20210421
    [9] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, doi: 10.7498/aps.68.20190583
    [10] 李书磊, 邱实, 石立华, 李云, 段艳涛. 基于正交传播算子的闪电宽带甚高频辐射源定位方法研究. 物理学报, doi: 10.7498/aps.68.20190522
    [11] 梁亦寒, 胡广月, 袁鹏, 王雨林, 赵斌, 宋法伦, 陆全明, 郑坚. 纳秒激光烧蚀固体靶产生的等离子体在外加横向磁场中膨胀时的温度和密度参数演化. 物理学报, doi: 10.7498/aps.64.125204
    [12] 王彩霞, 郄秀书, 蒋如斌, 杨静. 一次人工触发闪电上行正先导的传输特征. 物理学报, doi: 10.7498/aps.61.039203
    [13] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究. 物理学报, doi: 10.7498/aps.60.045210
    [14] 蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明远, 王俊芳, 刘冬霞, 潘伦湘. 峰值电流达几千安量级的闪电M分量放电特征及机理探讨. 物理学报, doi: 10.7498/aps.60.079201
    [15] 赵阳, 郄秀书, 孔祥贞, 张广庶, 张彤, 杨静, 冯桂力, 张其林, 王东方. 人工触发闪电电流波形特征参数分析. 物理学报, doi: 10.7498/aps.58.6616
    [16] 杨宏伟, 袁 洪, 陈如山, 杨 阳. 各向异性磁化等离子体的SO-FDTD算法. 物理学报, doi: 10.7498/aps.56.1443
    [17] 杨宏伟, 陈如山, 张 云. 等离子体的SO-FDTD算法和对电磁波反射系数的计算分析. 物理学报, doi: 10.7498/aps.55.3464
    [18] 魏 兵, 葛德彪. 各向异性有耗介质板介电系数和电导率的反演. 物理学报, doi: 10.7498/aps.54.648
    [19] 张 勤, 班春燕, 崔建忠, 巴启先, 路贵民, 张北江. CREM法半连铸Al合金过程中电磁场对溶质元素固溶的影响机理. 物理学报, doi: 10.7498/aps.52.2642
    [20] 吴奇学. 有旋电子在电磁场及二维谐振子场中运动的双波描述. 物理学报, doi: 10.7498/aps.49.2118
计量
  • 文章访问数:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-13

/

返回文章
返回