搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Newmark算法的任意磁化方向铁氧体电磁散射时域有限差分分析

王飞 魏兵 杨谦 李林茜

引用本文:
Citation:

基于Newmark算法的任意磁化方向铁氧体电磁散射时域有限差分分析

王飞, 魏兵, 杨谦, 李林茜

Newmark algorithm in the finite-difference time-domain analysis of ferrite magnetized in an arbitrary direction

Wang Fei, Wei Bing, Yang Qian, Li Lin-Qian
PDF
导出引用
  • 利用坐标系转换矩阵给出实验室坐标系中饱和磁化铁氧体的频域磁导系数张量,再通过频域到时域的转换关系jω→∂/∂t得到一个二阶微分方程形式的时域本构关系. 然后采用Newmark 方法求解时域本构关系从而给出一种适用于处理任意磁化方向铁氧体电磁问题的Newmark 时域有限差分算法. 利用此算法计算了饱和磁化铁氧体层的反(透) 射系数和饱和磁化铁氧体球的后向雷达散射截面,所获得的结果验证了此算法的正确有效性.
    The permeability tensor of saturated magnetized ferrite in frequency domain in the laboratory coordinate system is obtained by using the transformation matrix between the principal and laboratory system. The constitutive relation in time domain, which is a kind of second order differential equation, is derived by employing the transformation from the frequency domain jω to time domain ∂/∂t and solved by utilizing the Newmark algorithm. Consequently, a Newmark finite-difference time-domain method is proposed to deal with the problem of electromagnetic scattering by ferrite which is subjected to an external magnetic field in an arbitrary direction. The electromagnetic scattering by a magnetized ferrite layer and a sphere is simulated, and the numerical results demonstrate the validity and feasibility of the proposed method.
    • 基金项目: 国家高技术研究发展计划(批准号:2012AA01A308)、国家自然科学基金重点项目(批准号:61231003)和中央高校基本科研业务费专项资金(批准号:JB140503)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA01A308), the Key Program of the National Natural Science Foundation of China (Grant No. 61231003), and the Fundamental Research Funds for the Central Universities (Grant No. JB140503).
    [1]

    Zhou H M, Chen Q, Deng J H 2014 Chin. Phys. B 23 047502

    [2]

    Wang W J, Zang C G, Jiao Q J 2013 Chin. Phys. B 22 128101

    [3]

    Zhang H W, Li J, Su H, Zhou T C, Long Y, Zheng Z L 2013 Chin. Phys. B 22 117504

    [4]

    Yasir Rafique M, Pan L Q, Javed Q, Zubair Iqbal M, Qiu H M, Hassan Farooq M, Guo Z G, Tanveer M 2013 Chin. Phys. B 22 107101

    [5]

    Luebbers R J, Hunsberger F, Kunz K S 1991 IEEETrans. Antenn. Propag. 39 29

    [6]

    Kelley D F, Lubbers R J 1996 IEEE Trans. Antenn. Propag. 44 792

    [7]

    Chen Q, Katsurai M, Aoyagi P H 1998 IEEE Trans. Antenn. Propag. 46 1739

    [8]

    Liu S B, Mo J J, Yuan N C 2004 Acta Phys. Sin. 53 778 (in Chinese) [刘少斌, 莫锦军, 袁乃昌 2004 物理学报 53 778]

    [9]

    Xu L J, Yuan N C 2005 IEEE Microw. Wireless Compon. Lett. 15 277

    [10]

    Nickisch L J, Franke P M 1992 IEEE Trans. Antenn. Propag. Mag. 34 33

    [11]

    Takayama Y, Klaus W 2002 IEEE Microw. Wireless Compon. Lett. 12 102

    [12]

    Sullivan D M 1992 IEEE Trans. Antenn. Propag. 40 1223

    [13]

    Sullivan D M 1995 IEEE Trans. Antenn. Propag. 43 676

    [14]

    Sullivan D M 1996 IEEE Trans. Antenn. Propag. 44 28

    [15]

    Ge D B, Wu Y L, Zhu X Q 2003 Chin. J. Radio Sci. 18 359 (in Chinese) [葛德彪, 吴跃丽, 朱湘琴 2003 电波科学学报 18 359]

    [16]

    Zhang Y Q, Ge D B 2009 Acta Phys. Sin. 58 4573 (in Chinese) [张玉强, 葛德彪 2009 物理学报 58 4573]

    [17]

    Yang L X, Ge D B 2006 Acta Phys. Sin. 55 1751 (in Chinese) [杨利霞, 葛德彪 2006 物理学报 55 1751]

    [18]

    Yang L X, Ge D B, Wang G, Yan S 2007 Acta Phys. Sin. 56 6937 (in Chinese) [杨利霞, 葛德彪, 王刚, 阎述 2007 物理学报 56 6937]

    [19]

    Yang L X, Ge D B, Zhao Y H, Wang G, Yan S 2008 Acta Phys. Sin. 57 2936 (in Chinese) [杨利霞, 葛德彪, 赵跃华, 王刚, 阎述 2008 物理学报 57 2936]

    [20]

    Wang F, Ge D B, Wei B 2009 Acta Phys. Sin. 58 6356 (in Chinese) [王飞, 葛德彪, 魏兵 2009 物理学报 58 6356]

    [21]

    Wang F, Wei B 2013 Acta Phys. Sin. 62 084106 (in Chinese) [王飞, 魏兵 2013 物理学报 62 084106]

    [22]

    Newmark N M 1959 J. Eng. Mech. Div. 85 67

    [23]

    Zienkiewich O C 1977 Earthquate Eng. Struct. Dyn. 5 413

    [24]

    Ge D B, Yan Y B 2011 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi'an:Xidian University Press) p11 (in Chinese) [葛德彪, 闫玉波 2011 电磁波时域有限差分法 (第三版) (西安: 西安电子科技大学出版社) 第11页]

    [25]

    Bi D X 1985 Electromagnetic Field Theory (Beijing: Publishing House of Electronics Industry) (in Chinese) [毕德显 1985 电磁场理论 (北京: 电子工业出版社)]

    [26]

    Kong J A 2000 Electromagnetic Wave Theory (Cambridge: EMW Publishing)

    [27]

    Schuster J, Lubbers R 1996 IEEE Antennas and Propagation Society International Symposium 3 1648

  • [1]

    Zhou H M, Chen Q, Deng J H 2014 Chin. Phys. B 23 047502

    [2]

    Wang W J, Zang C G, Jiao Q J 2013 Chin. Phys. B 22 128101

    [3]

    Zhang H W, Li J, Su H, Zhou T C, Long Y, Zheng Z L 2013 Chin. Phys. B 22 117504

    [4]

    Yasir Rafique M, Pan L Q, Javed Q, Zubair Iqbal M, Qiu H M, Hassan Farooq M, Guo Z G, Tanveer M 2013 Chin. Phys. B 22 107101

    [5]

    Luebbers R J, Hunsberger F, Kunz K S 1991 IEEETrans. Antenn. Propag. 39 29

    [6]

    Kelley D F, Lubbers R J 1996 IEEE Trans. Antenn. Propag. 44 792

    [7]

    Chen Q, Katsurai M, Aoyagi P H 1998 IEEE Trans. Antenn. Propag. 46 1739

    [8]

    Liu S B, Mo J J, Yuan N C 2004 Acta Phys. Sin. 53 778 (in Chinese) [刘少斌, 莫锦军, 袁乃昌 2004 物理学报 53 778]

    [9]

    Xu L J, Yuan N C 2005 IEEE Microw. Wireless Compon. Lett. 15 277

    [10]

    Nickisch L J, Franke P M 1992 IEEE Trans. Antenn. Propag. Mag. 34 33

    [11]

    Takayama Y, Klaus W 2002 IEEE Microw. Wireless Compon. Lett. 12 102

    [12]

    Sullivan D M 1992 IEEE Trans. Antenn. Propag. 40 1223

    [13]

    Sullivan D M 1995 IEEE Trans. Antenn. Propag. 43 676

    [14]

    Sullivan D M 1996 IEEE Trans. Antenn. Propag. 44 28

    [15]

    Ge D B, Wu Y L, Zhu X Q 2003 Chin. J. Radio Sci. 18 359 (in Chinese) [葛德彪, 吴跃丽, 朱湘琴 2003 电波科学学报 18 359]

    [16]

    Zhang Y Q, Ge D B 2009 Acta Phys. Sin. 58 4573 (in Chinese) [张玉强, 葛德彪 2009 物理学报 58 4573]

    [17]

    Yang L X, Ge D B 2006 Acta Phys. Sin. 55 1751 (in Chinese) [杨利霞, 葛德彪 2006 物理学报 55 1751]

    [18]

    Yang L X, Ge D B, Wang G, Yan S 2007 Acta Phys. Sin. 56 6937 (in Chinese) [杨利霞, 葛德彪, 王刚, 阎述 2007 物理学报 56 6937]

    [19]

    Yang L X, Ge D B, Zhao Y H, Wang G, Yan S 2008 Acta Phys. Sin. 57 2936 (in Chinese) [杨利霞, 葛德彪, 赵跃华, 王刚, 阎述 2008 物理学报 57 2936]

    [20]

    Wang F, Ge D B, Wei B 2009 Acta Phys. Sin. 58 6356 (in Chinese) [王飞, 葛德彪, 魏兵 2009 物理学报 58 6356]

    [21]

    Wang F, Wei B 2013 Acta Phys. Sin. 62 084106 (in Chinese) [王飞, 魏兵 2013 物理学报 62 084106]

    [22]

    Newmark N M 1959 J. Eng. Mech. Div. 85 67

    [23]

    Zienkiewich O C 1977 Earthquate Eng. Struct. Dyn. 5 413

    [24]

    Ge D B, Yan Y B 2011 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi'an:Xidian University Press) p11 (in Chinese) [葛德彪, 闫玉波 2011 电磁波时域有限差分法 (第三版) (西安: 西安电子科技大学出版社) 第11页]

    [25]

    Bi D X 1985 Electromagnetic Field Theory (Beijing: Publishing House of Electronics Industry) (in Chinese) [毕德显 1985 电磁场理论 (北京: 电子工业出版社)]

    [26]

    Kong J A 2000 Electromagnetic Wave Theory (Cambridge: EMW Publishing)

    [27]

    Schuster J, Lubbers R 1996 IEEE Antennas and Propagation Society International Symposium 3 1648

  • [1] 叶志红, 张杰, 周健健, 苟丹. 有耗介质层上多导体传输线的电磁耦合时域分析方法. 物理学报, 2020, 69(6): 060701. doi: 10.7498/aps.69.20191214
    [2] 王飞, 魏兵, 李林茜. 色散介质电磁特性时域有限差分分析的Newmark方法. 物理学报, 2014, 63(10): 104101. doi: 10.7498/aps.63.104101
    [3] 杨利霞, 马辉, 施卫东, 施丽娟, 于萍萍. 基于表面阻抗边界条件的等离子体薄涂层电磁散射的时域有限差分分析. 物理学报, 2013, 62(3): 034102. doi: 10.7498/aps.62.034102
    [4] 徐润汶, 郭立新, 范天奇. 有限元/边界积分方法在海面及其上方弹体目标电磁散射中的应用. 物理学报, 2013, 62(17): 170301. doi: 10.7498/aps.62.170301
    [5] 王飞, 魏兵. 电各向异性色散介质电磁散射时域有限差分分析的半解析递推卷积方法. 物理学报, 2013, 62(4): 044101. doi: 10.7498/aps.62.044101
    [6] 王飞, 魏兵. 任意磁化方向铁氧体电磁散射时域有限差分分析的Z变换方法. 物理学报, 2013, 62(8): 084106. doi: 10.7498/aps.62.084106
    [7] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究. 物理学报, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [8] 王运华, 张彦敏, 郭立新. 两相邻有限长圆柱的复合电磁散射研究. 物理学报, 2011, 60(2): 021102. doi: 10.7498/aps.60.021102
    [9] 张宇, 杨曦, 苟铭江, 史庆藩. 电磁散射问题的两种反演方法研究. 物理学报, 2010, 59(6): 3905-3911. doi: 10.7498/aps.59.3905
    [10] 杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚. 斜入射分层线性各向异性等离子体电磁散射时域有限差分方法分析. 物理学报, 2010, 59(9): 6089-6095. doi: 10.7498/aps.59.6089
    [11] 任新成, 郭立新. 具有二维fBm特征的分层介质粗糙面电磁散射的特性研究. 物理学报, 2009, 58(3): 1627-1634. doi: 10.7498/aps.58.1627
    [12] 魏 兵, 葛德彪, 王 飞. 一种处理色散介质问题的通用时域有限差分方法. 物理学报, 2008, 57(10): 6290-6297. doi: 10.7498/aps.57.6290
    [13] 杨利霞, 葛德彪, 赵跃华, 王 刚, 阎 述. 基于直接离散方式的磁化铁氧体材料电磁散射的时域有限差分方法分析. 物理学报, 2008, 57(5): 2936-2940. doi: 10.7498/aps.57.2936
    [14] 代少玉, 吴振森, 徐仰彬. 用基于Daubechies尺度函数的时域多分辨分析计算电磁散射. 物理学报, 2007, 56(2): 786-790. doi: 10.7498/aps.56.786
    [15] 杨利霞, 葛德彪, 魏 兵. 电各向异性色散介质电磁散射的三维递推卷积-时域有限差分方法分析. 物理学报, 2007, 56(8): 4509-4514. doi: 10.7498/aps.56.4509
    [16] 杨利霞, 葛德彪, 王 刚, 阎 述. 磁化铁氧体材料电磁散射递推卷积-时域有限差分方法分析. 物理学报, 2007, 56(12): 6937-6944. doi: 10.7498/aps.56.6937
    [17] 王运华, 郭立新, 吴振森. 改进的二维分形模型在海面电磁散射中的应用. 物理学报, 2006, 55(10): 5191-5199. doi: 10.7498/aps.55.5191
    [18] 杨利霞, 葛德彪. 磁各向异性色散介质散射的Padé时域有限差分方法分析. 物理学报, 2006, 55(4): 1751-1758. doi: 10.7498/aps.55.1751
    [19] 郭立新, 王运华, 吴振森. 双尺度动态分形粗糙海面的电磁散射及多普勒谱研究. 物理学报, 2005, 54(1): 96-101. doi: 10.7498/aps.54.96
    [20] 闫玉波, 李清亮, 吴振森. 一种新时域交替隐式差分算法在散射问题中的应用. 物理学报, 2004, 53(12): 4173-4180. doi: 10.7498/aps.53.4173
计量
  • 文章访问数:  3409
  • PDF下载量:  384
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-27
  • 修回日期:  2014-04-04
  • 刊出日期:  2014-08-05

基于Newmark算法的任意磁化方向铁氧体电磁散射时域有限差分分析

  • 1. 西安电子科技大学物理与光电工程学院, 西安 710071
    基金项目: 国家高技术研究发展计划(批准号:2012AA01A308)、国家自然科学基金重点项目(批准号:61231003)和中央高校基本科研业务费专项资金(批准号:JB140503)资助的课题.

摘要: 利用坐标系转换矩阵给出实验室坐标系中饱和磁化铁氧体的频域磁导系数张量,再通过频域到时域的转换关系jω→∂/∂t得到一个二阶微分方程形式的时域本构关系. 然后采用Newmark 方法求解时域本构关系从而给出一种适用于处理任意磁化方向铁氧体电磁问题的Newmark 时域有限差分算法. 利用此算法计算了饱和磁化铁氧体层的反(透) 射系数和饱和磁化铁氧体球的后向雷达散射截面,所获得的结果验证了此算法的正确有效性.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回