搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于表面阻抗边界条件的等离子体薄涂层电磁散射的时域有限差分分析

杨利霞 马辉 施卫东 施丽娟 于萍萍

引用本文:
Citation:

基于表面阻抗边界条件的等离子体薄涂层电磁散射的时域有限差分分析

杨利霞, 马辉, 施卫东, 施丽娟, 于萍萍

Finite difference time domain analysis on electromagnetic scattering characteristic of plasma thin layer based on surface impedance boundary condition method

Yang Li-Xia, Ma Hui, Shi Wei-Dong, Shi Li-Juan, Yu Ping-Ping
PDF
导出引用
  • 基于表面阻抗边界条件时域有限差分(FDTD)方法研究了一维斜入射情况下非磁化等离子体薄涂层涂敷金属材料的电磁散射特性, 该方法忽略对薄层背景材料进行网格剖分, 大大减少了计算量. 首先推导了理想导体涂敷等离子体薄涂层的表面阻抗频域表达式, 然后代入边界条件并变换到时域, 再用分段线性递推卷积方法将时域表达式离散得到FDTD迭代式. 编程计算了垂直及斜入射情形下的平行极化和垂直极化反射系数, 通过验证算例与解析解对比, 结果表明该方法的准确性和有效性. 最后利用该方法分析了不同入射角对反射系数的影响.
    Using the surface impedance boundary condition (SIBC)-finite difference time domain (FDTD) method, the electromagnetic scattering characteristic of non-magnetized plasma coating on metal material is obtained, under the one-dimensional (1D) oblique incident wave condition. The SIBC method can greatly reduce computational memory by ignoring the mesh division of the background material. Firstly, the expression of frequency domain surface impedance is derived, and substituted into boundary condition equation. Then the equation is transformed to time domain via Fourier inverse transformation method, and the formula is quantized to obtain the update equation by piecewise linear recursive convolution (PLRC) method. The algorithm is used to calculate the reflection coefficients of parallel and vertical polarization waves at oblique incident angels. The comparison of the SIBC-FDTD results with analytic solutions shows the validation and effectiveness of proposed method. Finally, the effect of incident angle on reflection coefficient is analyzed by this method.
    • 基金项目: 国家自然科学基金(批准号: 61072002)、 教育部高等学校博士点科研基金(批准号: 20093227120018)、 江苏省第八届"六大人才高峰计划"(批准号: 2011-DZXX-031)和江苏省博士后基金(批准号: 1201001A)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61072002), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20093227120018), Elitist of Liu-Da Summit Project in Jiangsu Province at 2011 (Grant No. 2011-DZXX-031), and Postdoctoral Science Foundation in Jiangsu (Grant No. 1201001A).
    [1]

    Minkwan K, Gulhan A 2011 Proceedings of 5th International Conference on Recent Advances In Space Technologies Istanbul, Turkiye, June 9-11, 2011 p412

    [2]

    Gillman E D, Foster J E, Blankson I M 2010 2010 IEEE International Conference on Plasma Science Norfolk, Virginia, USA, June 20-24, 2010 (abstracts)

    [3]

    Zivanovic S S, Yee K S, Mei K K 1991 IEEE Trans. Microwave Theory Tech. 39 471

    [4]

    Kärkkäinen M K 2003 IEEE Trans. Microwave Theory Tech. 51 1774

    [5]

    Maloney J G, Smith G S 1992 IEEE Trans. Antennas Propagat. 40 38

    [6]

    Kärkkäinen M K 2005 IEEE Trans. Antennas Propagat. 53 1174

    [7]

    Kärkkäinen M K 2004 IEEE Trans. Electromagnetic Compatibility 46 222

    [8]

    Wei B, Dong Y H, Wang F, Li C Z 2010 Acta Phys. Sin. 59 2443 (in Chinese) [魏兵, 董宇航, 王飞, 李存志 2010 物理学报 59 2443]

    [9]

    Kelley D F, Luebbers R J 1996 IEEE Trans. Antennas Propagat. 44 792

    [10]

    Luebbers R J, Hunsberger F, Kunz K S 1991 IEEE Trans. Antennas Propagat. 39 29

    [11]

    Ge D B, Yan Y B 2011 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Edn.) (Xi'an: Xidian University Press) p305 (in Chinese) [葛德彪, 闫玉波 2011 电磁波时域有限差分方法(第三版) (西安: 西安电子科技大学出版社)第305页]

  • [1]

    Minkwan K, Gulhan A 2011 Proceedings of 5th International Conference on Recent Advances In Space Technologies Istanbul, Turkiye, June 9-11, 2011 p412

    [2]

    Gillman E D, Foster J E, Blankson I M 2010 2010 IEEE International Conference on Plasma Science Norfolk, Virginia, USA, June 20-24, 2010 (abstracts)

    [3]

    Zivanovic S S, Yee K S, Mei K K 1991 IEEE Trans. Microwave Theory Tech. 39 471

    [4]

    Kärkkäinen M K 2003 IEEE Trans. Microwave Theory Tech. 51 1774

    [5]

    Maloney J G, Smith G S 1992 IEEE Trans. Antennas Propagat. 40 38

    [6]

    Kärkkäinen M K 2005 IEEE Trans. Antennas Propagat. 53 1174

    [7]

    Kärkkäinen M K 2004 IEEE Trans. Electromagnetic Compatibility 46 222

    [8]

    Wei B, Dong Y H, Wang F, Li C Z 2010 Acta Phys. Sin. 59 2443 (in Chinese) [魏兵, 董宇航, 王飞, 李存志 2010 物理学报 59 2443]

    [9]

    Kelley D F, Luebbers R J 1996 IEEE Trans. Antennas Propagat. 44 792

    [10]

    Luebbers R J, Hunsberger F, Kunz K S 1991 IEEE Trans. Antennas Propagat. 39 29

    [11]

    Ge D B, Yan Y B 2011 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Edn.) (Xi'an: Xidian University Press) p305 (in Chinese) [葛德彪, 闫玉波 2011 电磁波时域有限差分方法(第三版) (西安: 西安电子科技大学出版社)第305页]

计量
  • 文章访问数:  2578
  • PDF下载量:  558
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-14
  • 修回日期:  2012-07-11
  • 刊出日期:  2013-02-05

基于表面阻抗边界条件的等离子体薄涂层电磁散射的时域有限差分分析

  • 1. 江苏大学计算机科学与通信工程学院通信工程系, 镇江 212013;
  • 2. 江苏大学流体机械工程技术研究中心, 镇江 212013;
  • 3. 江苏大学理学院物理系, 镇江 212013
    基金项目: 

    国家自然科学基金(批准号: 61072002)、 教育部高等学校博士点科研基金(批准号: 20093227120018)、 江苏省第八届"六大人才高峰计划"(批准号: 2011-DZXX-031)和江苏省博士后基金(批准号: 1201001A)资助的课题.

摘要: 基于表面阻抗边界条件时域有限差分(FDTD)方法研究了一维斜入射情况下非磁化等离子体薄涂层涂敷金属材料的电磁散射特性, 该方法忽略对薄层背景材料进行网格剖分, 大大减少了计算量. 首先推导了理想导体涂敷等离子体薄涂层的表面阻抗频域表达式, 然后代入边界条件并变换到时域, 再用分段线性递推卷积方法将时域表达式离散得到FDTD迭代式. 编程计算了垂直及斜入射情形下的平行极化和垂直极化反射系数, 通过验证算例与解析解对比, 结果表明该方法的准确性和有效性. 最后利用该方法分析了不同入射角对反射系数的影响.

English Abstract

参考文献 (11)

目录

    /

    返回文章
    返回