搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大口径锥型玻璃管X射线透镜的设计与模拟

华陆 周泽贤 钟玉川 张金福 袁天语 史路林 王昭 陈宇鹏 王国东 陈燕红 金雪剑 雷瑜 吴晓霞 王瑜玉 孙天希 程锐 杨杰

引用本文:
Citation:

大口径锥型玻璃管X射线透镜的设计与模拟

华陆, 周泽贤, 钟玉川, 张金福, 袁天语, 史路林, 王昭, 陈宇鹏, 王国东, 陈燕红, 金雪剑, 雷瑜, 吴晓霞, 王瑜玉, 孙天希, 程锐, 杨杰

Design and Simulation of X-ray Lens with Large Diameter Conical Glass Tube

HUA Lu, ZHOU Zexian, ZHONG Yuchuan, ZHANG Jinfu, YUAN Tianyu, SHI Lulin, WANG Zhao, CHEN Yupeng, WANG Guodong, CHENG Yanhong, JIN Xuejian, LEI Yu, WU Xiaoxia, WANG Yuyu, SUN Tianxi, CHENG Rui, YANG Jie
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 高能量密度物理实验诊断中,采用晶体谱仪等X射线分光元件可实现靶物质中心区温度和密度等参数的高谱线分辨要求,通过优化靶点光源到探测器间的光输运效率,可极大的提升在低光源发射度下实验诊断精度。本文介绍了一种大口径锥型玻璃管的X光传输部件,构建了对应的数学模型,基于光线追迹法,用MATLAB软件对其X射线的传输图像进行了数值模拟。结果显示:新设计的大口径锥型玻璃管传输部件对面型误差要求较低,其焦斑范围可控;可以有效提升光源的利用率,其平均增益约为3.1。另外,本文还介绍了该大口径锥型玻璃管传输部件系统性的性能模拟和分析结果,为实验室高能量密度物理研究中的低发射度X射线诊断技术升级提供了新的思路和参考。
    In high-energy density physics (HEDP) experiments, accurate diagnostics of physical parameters such as electron temperature, plasma density, and ionization state are essential for understanding matter behavior under extreme conditions. X-ray spectroscopic techniques, particularly those employing crystal spectrometers, are widely used to achieve high spectral resolution in these scenarios. However, a common challenge in such experiments lies in the inherently low brightness and poor spatial coherence of laboratory-based X-ray sources, which limit photon throughput and, consequently, diagnostic accuracy. Enhancing the efficiency of X-ray optical transport between the source and the detector is therefore a critical step toward improving overall system performance.Capillary X-ray optics, which function based on the principle of total internal reflection within hollow glass structures, offer promising avenues for beam shaping, collimation, and focusing in the soft to hard X-ray range. These optical devices are typically categorized into polycapillary and monocapillary types. While polycapillary optics are composed of numerous micro-channels and used primarily for collimating or focusing divergent X-rays, monocapillary lenses—consisting of single curved channels—offer more precise beam control and are particularly suited for customized X-ray pathways. Depending on the curvature of the inner reflective surface, monocapillaries are classified into conical, parabolic, and ellipsoidal geometries. In this study, we propose and analyze a novel design of a large-caliber conical glass tube, specifically tailored to address the issue of low light utilization in multi-channel Focusing Spectrographs with Spatial Resolution (FSSR). The proposed conical glass tube, fabricated from a single large-diameter capillary structure, simplifies alignment requirements and reduces the surface manufacturing precision typically demanded by complex aspheric lenses. Its geometric configuration enables the redirection and controlled convergence of X-rays from extended or weak sources, thereby improving photon collection without significantly altering beam divergence.To quantify the performance of this optical system, we developed a detailed mathematical ray-tracing model and implemented it in MATLAB. The model incorporates physical parameters such as capillary inner radius, taper angle, reflection losses, and source-detector geometry. Numerical simulations reveal that the new conical design achieves a 3.1-fold improvement in source utilization efficiency compared to conventional flat or slit-based systems. Furthermore, the lens exhibits a ring-shaped enhancement region in the output intensity profile, which is tunable by adjusting the capillary geometry and source positioning. This feature enables the spatial tailoring of the beam profile, facilitating optimized coupling with downstream spectroscopic components or imaging systems.In conclusion, the proposed large-aperture conical monocapillary X-ray lens provides a practical and efficient solution for enhancing X-ray optical transport in low-brightness source environments. Its simple construction, tunable focusing characteristics, and compatibility with diverse X-ray source types make it a compelling candidate for integration into high-resolution X-ray diagnostic systems, particularly in HEDP and laboratory-scale X-ray spectroscopy. This work not only introduces a novel optical approach but also offers a robust theoretical and simulation framework that can guide future experimental design and application of capillary-based X-ray optics.
  • [1]

    Reverdin C, Thais F, Loisel G, Bougeard M 2010 Rev. Sci. Instrum. 81 10E327

    [2]

    Varentsov D, Ternovoi V Y, Kulish M, Fernengel D, Fertman A, Hug A, Menzel J, Ni P, Nikolaev D N, Shilkin N, Turtikov V, Udrea S, Fortov V E, Golubev A A, Gryaznov V K, Hoffmann D H H, Kim V, Lomonosov I V, Mintsev V, Sharkov By, Shutov A, Spiller P, Tahir N A, Wahl H 2007 Nucl. Instrum. Methods Phys. Res., Sect. A 577 262

    [3]

    Ryazantsev S N, Skobelev I Y, Filippov E D, Martynenko A S, Mishchenko M D, Krůs M, Renner O, Pikuz S A 2021 Matter Radiat. Extremes 6 014402

    [4]

    Glenzer S H, Landen O L, Neumayer P, Lee R W, Widmann K, Pollaine S W, Wallace R J, Gregori G, Höll A, Bornath T, Thiele R, Schwarz V, Kraeft W D, Redmer R 2007 Phys. Rev. Lett. 98 065002

    [5]

    Regan S P, Falk K, Gregori G, Radha P B, Hu S X, Boehly T R, Crowley B J B, Glenzer S H, Landen O L, Gericke D O, Döppner T, Meyerhofer D D, Murphy C D, Sangster T C, Vorberger J 2012 Phys. Rev. Lett. 109 265003

    [6]

    Vinko S M, Ciricosta O, Cho B I, Engelhorn K, Chung H K, Brown C R D, Burian T, Chalupský J, Falcone R W, Graves C, Hájková V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P A, Nagler B, Wark J S 2012 Nature 482 59

    [7]

    Yi S Z, Du H Y, Si H X, Zhou Z X, Jiang L, Wang Z S, Cheng R 2023 Nucl. Instrum. Methods Phys. Res., Sect. A 1057 168722

    [8]

    Yi Q, Meng S J, Ye F, Lu J, Yan X S, Yang R H, Jiang S Q, Ning J M, Zhou L, Chen F X, Yang J L, Xu Z P, Li Z H 2023 AIP Adv. 13 035216

    [9]

    Renner O, Šmíd M, Batani D, Antonelli L 2016 Plsma Phys. Control. Fusion 58 75007

    [10]

    Eftekhari-Zadeh E, Loetzsch R, Manganelli L, Blümcke M S, Tauschwitz A, Uschmann I, Pukhov A, Rosmej O, Spielmann C, Kartashov D 2023 Phys. Scr. 98 115615

    [11]

    Hurricane O A, Herrmann M C 2017 Annu. Rev. Nucl. Part. Sci. 67 213

    [12]

    Zhao Y, Yang J M, Zhang J Y, Liu J S, Yuan X, Jin F T 2009 Rev. Sci. Instrum. 80 043505

    [13]

    Kumakhov M A, Komarov F F 1990 Phys. Rep. 191 289

    [14]

    Balaic D X, Nugent K A, Barnea Z, Garrett R, Wilkins W 1995 J. Synchrotron Rad. 2 296

    [15]

    Yokomae S, Motoyama H, Mimura H 2018 Precis. Eng. 53 248

    [16]

    MacDonald C A 2010 X-Ray Opt. Instrum. 2010 867049

    [17]

    Gibson W M, Kumakhov M 1993 Proc. SPIE. 172

    [18]

    Bilderback D H, Hoffman S A, Thiel D J 1994 Science 263 201

    [19]

    Sowa K M, Jany B R, Korecki P 2018 Optica 5 577

    [20]

    Korecki P, Sowa K M, Jany B R, Krok F 2016 Phys. Rev. Lett. 116 233902

    [21]

    Szwedowski-Rammert V, Baumann J, Schlesiger C, Waldschläger U, Gross A, Kanngießer B, Mantouvalou I 2019 J. Anal. Atom. Spectrom. 34 922

    [22]

    Matsuyama T, Tanaka Y, Taniguchi N, Oh J S, Tsuji K 2024 J. Anal. Atom. Spectrom. 39 76

    [23]

    Matsuyama T, Tanaka Y, Mori Y, Tsuji K 2023 Talanta 265 124808

    [24]

    Peng S, Liu Z G, Sun T X, Ma Y Z, Ding X L 2014 Anal. Chem. 86 362

    [25]

    Fittschen U E A, Falkenberg G 2011 Spectrochim. Acta. Part B: At. Spectrosc. 66 567

    [26]

    Wallen S L, Pfund D M, Fulton J L, Yonker C R, Newville M, Ma Y 1996 Rev. Sci. Instrum. 67 2843

    [27]

    Alexandre B J, Gomes M G, Real S 2015 Mater. struct. 48 2869

    [28]

    Lin X Y, Li Y D, Sun T X, Pan Q L 2010 Chin. phys. B 19 40(林晓燕 李玉德 孙天希 潘秋丽 2010 中国物理B 19 40)

    [29]

    Liu A D, Lin Y Z 2004 Math. Comput. Simul. 66 577

    [30]

    Peng S Q, Liu Z G, Sun T X, Wang K, Yi L T, Yang K, Chen M, Wang J B 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 795 186

    [31]

    Sun T X, Ding X L 2015 Rev. Anal. Chem. 34 45

    [32]

    Stern E A, Kalman Z, Lewis A, Lieberman K 1988 Appl. Opt. 27 5135

    [33]

    Wen H, Zhou M, Wu Y M, Yuan T Y, Liu Z G 2022 Appl. Opt. 61 3656

    [34]

    Motoyama H, Sato T, Iwasaki A, Takei Y, Kume T, Egawa S, Hiraguri K, Hashizume H, Yamanouchi K, Mimura H 2016 Rev. Sci. Instrum. 87 051803

    [35]

    Koch R J, Jozwiak C, Bostwick A, Stripe B, Cordier M, Hussain Z, Yun W, Rotenberg E 2018 J. Synchrotron Radiat. 31 50

    [36]

    Shao S K, Yuan T Y, Li H Q, Sun X P, Hua L, Liu Z G, Sun T X 2022 J. Beijing Norm. Univ. (Nat. Sci.) 58 681 (邵尚坤, 袁天语, 李惠泉, 孙学鹏, 华陆, 刘志国, 孙天希 2022 北京师范大学学报(自然科学版) 58 681)

    [37]

    Jiang B W, Liu Z G, Sun X P, Sun T X, Deng B, Li F Z, Yi L T, Yuan M N, Zhu Y, Zhang F S, Xiao T Q, Wang J, Tai R Z 2017 Opt. Commun. 398 91

    [38]

    Balaic D X, Barnea Z, Nugent K A, Garrett R F, Varghese J N, Wilkins S W 1996 J. Synchrotron Rad. 3 289

    [39]

    Wang Y B, Li Y L, Shao S K, Zhang X Y, Li Y F, Sun X P, Tao F, Deng B, Sun T X 2020 Opt. Commun.464 125544

    [40]

    Wang X Y, Li Y D, Luo H, Ye L, Zhou M, Duan J Y, Lin X Y 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 947 162762

    [41]

    Sun X P, Zhang X Y, Zhu Y, Wang Y B, Shang H Z, Zhang F S, Liu Z G, Sun T X 2018 Nucl. Instrum. Methods Phys. Res., Sect. A 888 13

    [42]

    Zhou Z X, Cheng R, Du H Y, Yi S Z, Fu F, Wang G D, Shi L L, Wang Z, Jin X J, Chen Y H, Zhang Y S, Chen L W, Yang J, Su M G 2024 J. Anal. At. Spectrom. 39 31

    [43]

    Sun T X 2022 Acta Opt. Sin. 42 1134002(孙天希 2022 光学学报 42 1134002)

    [44]

    Shao S K, Li H Q, Yuan T Y, Zhang X Y, Hua L, Sun X P, Liu Z G, Sun T X 2022 Front. Phys. 10 816981

    [45]

    Zymierska D 1996 Acta. Phys. Pol. A 89 347

  • [1] 袁天语, 邵尚坤, 孙学鹏, 李惠泉, 华陆, 孙天希. 一种用于软X射线激光去相干的单玻璃管光学透镜设计. 物理学报, doi: 10.7498/aps.72.20221917
    [2] 周腊珍, 夏文静, 许倩倩, 陈赞, 李坊佐, 刘志国, 孙天希. 一种基于毛细管X光透镜的微型锥束CT扫描仪. 物理学报, doi: 10.7498/aps.71.20212195
    [3] 姜其立, 段泽明, 帅麒麟, 李融武, 潘秋丽, 程琳. 一种毛细管聚焦的微束X射线衍射仪. 物理学报, doi: 10.7498/aps.68.20190497
    [4] 张书赫, 邵梦, 周金华. 光线庞加莱球法构建的结构光场及其传输特性研究. 物理学报, doi: 10.7498/aps.67.20180918
    [5] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, doi: 10.7498/aps.64.124703
    [6] 陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔. Kinoform单透镜的硬X射线聚焦性能. 物理学报, doi: 10.7498/aps.64.164104
    [7] 刘正坤, 邱克强, 陈火耀, 刘颖, 徐向东, 付绍军, 王琛, 安红海, 方智恒. 软X射线双频光栅剪切干涉法研究. 物理学报, doi: 10.7498/aps.62.070703
    [8] 陈灿, 佟亚军, 谢红兰, 肖体乔. Laue弯晶聚焦特性的光线追迹研究. 物理学报, doi: 10.7498/aps.61.104102
    [9] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断. 物理学报, doi: 10.7498/aps.61.148701
    [10] 董克攻, 吴玉迟, 郑无敌, 朱斌, 曹磊峰, 何颖玲, 马占南, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 魏来, 臧华平, 余金清, 谷渝秋, 张保汉, 王晓方. 充气型放电毛细管的密度测量及磁流体模拟. 物理学报, doi: 10.7498/aps.60.095202
    [11] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟. 高能脉冲X射线能谱测量. 物理学报, doi: 10.7498/aps.59.7729
    [12] 乐孜纯, 张明, 董文, 全必胜, 刘魏, 刘恺. 制作工艺误差对X射线组合折射透镜聚焦性能影响研究. 物理学报, doi: 10.7498/aps.59.6284
    [13] 乐孜纯, 董文, 刘魏, 张明, 梁静秋, 全必胜, 刘恺, 梁中翥, 朱佩平, 伊福廷, 黄万霞. 抛物面型X射线组合折射透镜聚焦性能的理论与实验研究. 物理学报, doi: 10.7498/aps.59.1977
    [14] 陈宝振, 黄祖洽. 飞秒强激光在充气毛细管中产生三次谐波的效率. 物理学报, doi: 10.7498/aps.54.113
    [15] 邬鹏举, 李玉德, 林晓燕, 刘安东, 孙天希. x射线在毛细导管中传输的模拟计算. 物理学报, doi: 10.7498/aps.54.4478
    [16] 赵永蓬, 程元丽, 王 骐, 林 靖, 崛田荣喜. 毛细管放电激励软x射线激光的产生时间. 物理学报, doi: 10.7498/aps.54.2731
    [17] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用. 物理学报, doi: 10.7498/aps.54.4979
    [18] 江少恩, 郑志坚, 成金秀, 孙可煦, 杨家敏, 王红斌. X射线沿柱腔轴向能量传输实验测量. 物理学报, doi: 10.7498/aps.49.1303
    [19] 陈宝振. X射线在毛细导管中传输的理论研究. 物理学报, doi: 10.7498/aps.49.1933
    [20] 杨家敏, 易荣清, 陈正林, 孙可煦, 丁耀南, 郑志坚, 李朝光, 崔明启, 朱佩平, 崔聪悟. 透射光栅对软X射线衍射效率的研究. 物理学报, doi: 10.7498/aps.47.613
计量
  • 文章访问数:  176
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-10

/

返回文章
返回