-
激光具有亮度高、单色性好、高相干性及方向性好的优势, 然而在激光成像、激光加工等场景只想利用其高亮度或高单色性, 高相干性导致的干涉效应会影响和限制其应用效果. 通过模拟计算的方法, 设计了一种针对软X射线激光去相干的新型单玻璃管光学透镜. 模拟结果显示, 针对波长为10 nm、束腰半径为1.25 mm的软X射线激光光束, 透镜入口端内直径5 mm、出口端内直径0.6 mm、长度15 cm的单玻璃管光学透镜在有效降低软X射线激光光束相干度的同时, 在出口处获得了发散度为30—50 mrad的出射光束, 相应的传输效率为78%, 光强增益为52.74. 针对波长不低于1 nm的激光光束, 该型号的单玻璃管光学透镜能够将光束的传输效率保持在30%以上. 本文还探讨了入射光能量和透镜长度对器件传输结果的影响. 结果表明, 根据全反射原理设计的单玻璃管光学透镜能够满足极紫外到X射线波长范围内激光去相干的应用需求, 在X射线激光成像、激光加工等方面具有广泛的应用前景.
-
关键词:
- 软X射线激光 /
- 去相干 /
- X射线光学器件 /
- 玻璃管全反射X射线光学器件
Laser has the advantages of high brightness, good monochromaticity, high coherence and good directionality, however, in some cases such as laser imaging and laser processing where only its high brightness or high monochromaticity is desired, the interference effect caused by high coherence can affect and limit its effective applications. In this work, a new single glass tube decoherence lens (SGTDL) is designed for soft X-ray laser decoherence through the simulation calculations. The simulation results show that an SGTDL with an entrance diameter of 5 mm, exit diameter of 0.6 mm and a length of 15 cm can effectively reduce the coherence of the X-ray laser with a wavelength of 10 nm and a beam waist radius of 1.25 mm. At the same time, the exit beam with a divergence range of 30–50 mrad is obtained at the SGTDL’s exit, and the transmission efficiency and gain in power density of the SGTDL are 78% and 52.74, respectively. For a laser beam with a wavelength of up to 1 nm, this model of SGTDL can maintain the transmission efficiency of the beam at more than 30%. This work also discusses the influence of the X-ray laser energy and the SGTDL’s length on the transmission performances of the SGTDL. The results show that the SGTDL designed according to the total reflection principle can meet the application requirements for laser decoherence in a range from the extreme ultraviolet to X-ray wavelength, and has a wide application prospect in X-ray laser imaging, laser processing, etc.-
Keywords:
- soft X-ray laser /
- decoherence /
- X-ray optics /
- glass tube X-ray optics based on external total reflection
[1] 余永, 李钦明, 杨家岳等 2019 中国激光 46 0100005Google Scholar
Yu Y, Li Q M, Yang J Y, et al. 2019 Chin. J. Lasers 46 0100005Google Scholar
[2] Ma R M, Oulton R F 2019 Nat. Nanotechnol. 14 12Google Scholar
[3] He L, Özdemir Ş K, Yang L 2013 Laser Photonics Rev. 7 60Google Scholar
[4] 贾豪彦, 黄森林, 焦毅, 李京祎, 刘克新, 刘帅, 刘伟航, 刘中琦, 龙天云, 秦伟伦, 赵晟 2022 强激光与粒子束 34 054001Google Scholar
Jia H Y, Huang S L, Jiao Y, Li J Y, Liu K X, Liu S, Liu W H, Liu Z Q, Long T Y, Qin W L, Zhao S 2022 High Power Laser and Particle Beams 34 054001Google Scholar
[5] Kopp C, Ravel L, Meyrueis P 1999 J. Opt. A: Pure Appl. Opt. 1 398Google Scholar
[6] 郭金坤, 赵泽佳, 凌进中, 袁影, 王晓蕊 2022 物理学报 71 174203Google Scholar
Guo J K, Zhao Z J, Ling J Z, Yuan Y, Wang X R 2022 Acta Phys. Sin. 71 174203Google Scholar
[7] Eschen W, Loetgering L, Schuster V, Klas R, Kirsche A, Berthold L, Steinert M, Pertsch T, Gross H, Krause M, Limpert J, Rothhardt J 2022 Light Sci. Appl. 11 117Google Scholar
[8] Rez P 2021 Ultramicroscopy 231 113301Google Scholar
[9] Suckewer S, Morozov A, Goltsov A, Sokolov A V, Scully M O 2021 Laser Phys. Lett. 18 115001Google Scholar
[10] 徐捷, 穆宝忠, 陈亮, 李文杰, 徐欣业, 王新, 王占山, 张兴, 丁永坤 2020 强激光与粒子束 32 1001Google Scholar
Xu J, Mu B Z, Chen L, Li W J, Xu X Y, Wang X, Wang Z S, Zhang X, Ding Y K 2020 High Power Laser and Particle Beams 32 1001Google Scholar
[11] Ceglio N M 1991 Laser Part. Beams 9 71Google Scholar
[12] 王洪建, 叶雁, 阳庆国, 李泽仁, 刘红杰 2022 强激光与粒子束 34 1001Google Scholar
Wang H J, Ye Y, Yang Q G, Li Z Z, Liu H J 2022 High Power Laser and Particle Beams 34 1001Google Scholar
[13] 王琛, 红海, 方智恒, 熊俊, 王伟, 孙今人 2018 物理学报 67 015203Google Scholar
Wang C, Hong H, Fang Z H, Xiong J, Wang W, Sun J R 2018 Acta Phys. Sin. 67 015203Google Scholar
[14] 裴宪梓, 梁永浩, 王菲, 朱效立, 谢常青 2019 光子学报 48 314001Google Scholar
Pei X Z, Liang Y H, Wang F, Zhu X L, Xie C Q 2019 Acta Photonica Sin. 48 314001Google Scholar
[15] 刘志辉, 石振东, 杨欢, 李国俊, 方亮, 周崇喜 2014 红外与激光工程 43 1007Google Scholar
Liu Z H, Shi Z D, Yang H, Li G J, Fang L, Zhou C X 2014 Infrared and Laser Engineering 43 1007Google Scholar
[16] Xue L 2021 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[17] Hsiao Y N, Wu H P, Chen C H, Lin Y C, Lee M K, Liu S H 2014 Opt. Rev. 21 715Google Scholar
[18] Lindau S A 2012 Conference on Laser Beam Shaping XIII San Diego, CA, USA, August 13, 2012 p114
[19] Zhang Y, Dong B Z, Gu B Y, Yang G Z 1998 J. Opt. Soc. Am. A 15 1114Google Scholar
[20] Schreiber P, Kudaev S, Dannberg P, Zeitner U D 2006 Nonimaging Optics and Efficient Illumination Systems II Strasbourg, France, April 5–6, 2006 p188
[21] 王丽丽 2014 硕士学位论文 (北京: 北京师范大学)
Wang L L 2014 M. S. Thesis (Beijing: Beijing Normal University) (in Chinese)
[22] 孙天希 2022 光学学报 42 1134002
Sun T X 2022 Acta Opt. Sin. 42 1134002
-
表 1 模拟参数
Table 1. Simulation parameters.
模拟参数 参数值 透镜入口直径/mm 5.0 透镜出口直径/mm 0.6 透镜长度/mm 15 模拟光线数/根 18000 软X射线激光能量/eV 124 束腰半径/mm 1.25 表 2 不同长度透镜的发散度
Table 2. Divergence of lenses with different lengths.
L/cm $ {\phi }_{{x}^{+}}/ $rad $ {\phi }_{{y}^{+}} $/rad $ {\phi }_{{x}^{-}} $/rad $ {\phi }_{{y}^{-}} $/rad 5 0.131 0.089 0.131 0.165 10 0.06 0.049 0.065 0.082 15 0.043 0.029 0.045 0.055 20 0.032 0.031 0.032 0.035 表 3 不同长度SGTDL的光强增益
Table 3. Light intensity gain of SGTDL with the different lengths.
L/cm 5 10 15 20 光强增益 33.45 47.68 52.74 57.35 -
[1] 余永, 李钦明, 杨家岳等 2019 中国激光 46 0100005Google Scholar
Yu Y, Li Q M, Yang J Y, et al. 2019 Chin. J. Lasers 46 0100005Google Scholar
[2] Ma R M, Oulton R F 2019 Nat. Nanotechnol. 14 12Google Scholar
[3] He L, Özdemir Ş K, Yang L 2013 Laser Photonics Rev. 7 60Google Scholar
[4] 贾豪彦, 黄森林, 焦毅, 李京祎, 刘克新, 刘帅, 刘伟航, 刘中琦, 龙天云, 秦伟伦, 赵晟 2022 强激光与粒子束 34 054001Google Scholar
Jia H Y, Huang S L, Jiao Y, Li J Y, Liu K X, Liu S, Liu W H, Liu Z Q, Long T Y, Qin W L, Zhao S 2022 High Power Laser and Particle Beams 34 054001Google Scholar
[5] Kopp C, Ravel L, Meyrueis P 1999 J. Opt. A: Pure Appl. Opt. 1 398Google Scholar
[6] 郭金坤, 赵泽佳, 凌进中, 袁影, 王晓蕊 2022 物理学报 71 174203Google Scholar
Guo J K, Zhao Z J, Ling J Z, Yuan Y, Wang X R 2022 Acta Phys. Sin. 71 174203Google Scholar
[7] Eschen W, Loetgering L, Schuster V, Klas R, Kirsche A, Berthold L, Steinert M, Pertsch T, Gross H, Krause M, Limpert J, Rothhardt J 2022 Light Sci. Appl. 11 117Google Scholar
[8] Rez P 2021 Ultramicroscopy 231 113301Google Scholar
[9] Suckewer S, Morozov A, Goltsov A, Sokolov A V, Scully M O 2021 Laser Phys. Lett. 18 115001Google Scholar
[10] 徐捷, 穆宝忠, 陈亮, 李文杰, 徐欣业, 王新, 王占山, 张兴, 丁永坤 2020 强激光与粒子束 32 1001Google Scholar
Xu J, Mu B Z, Chen L, Li W J, Xu X Y, Wang X, Wang Z S, Zhang X, Ding Y K 2020 High Power Laser and Particle Beams 32 1001Google Scholar
[11] Ceglio N M 1991 Laser Part. Beams 9 71Google Scholar
[12] 王洪建, 叶雁, 阳庆国, 李泽仁, 刘红杰 2022 强激光与粒子束 34 1001Google Scholar
Wang H J, Ye Y, Yang Q G, Li Z Z, Liu H J 2022 High Power Laser and Particle Beams 34 1001Google Scholar
[13] 王琛, 红海, 方智恒, 熊俊, 王伟, 孙今人 2018 物理学报 67 015203Google Scholar
Wang C, Hong H, Fang Z H, Xiong J, Wang W, Sun J R 2018 Acta Phys. Sin. 67 015203Google Scholar
[14] 裴宪梓, 梁永浩, 王菲, 朱效立, 谢常青 2019 光子学报 48 314001Google Scholar
Pei X Z, Liang Y H, Wang F, Zhu X L, Xie C Q 2019 Acta Photonica Sin. 48 314001Google Scholar
[15] 刘志辉, 石振东, 杨欢, 李国俊, 方亮, 周崇喜 2014 红外与激光工程 43 1007Google Scholar
Liu Z H, Shi Z D, Yang H, Li G J, Fang L, Zhou C X 2014 Infrared and Laser Engineering 43 1007Google Scholar
[16] Xue L 2021 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[17] Hsiao Y N, Wu H P, Chen C H, Lin Y C, Lee M K, Liu S H 2014 Opt. Rev. 21 715Google Scholar
[18] Lindau S A 2012 Conference on Laser Beam Shaping XIII San Diego, CA, USA, August 13, 2012 p114
[19] Zhang Y, Dong B Z, Gu B Y, Yang G Z 1998 J. Opt. Soc. Am. A 15 1114Google Scholar
[20] Schreiber P, Kudaev S, Dannberg P, Zeitner U D 2006 Nonimaging Optics and Efficient Illumination Systems II Strasbourg, France, April 5–6, 2006 p188
[21] 王丽丽 2014 硕士学位论文 (北京: 北京师范大学)
Wang L L 2014 M. S. Thesis (Beijing: Beijing Normal University) (in Chinese)
[22] 孙天希 2022 光学学报 42 1134002
Sun T X 2022 Acta Opt. Sin. 42 1134002
计量
- 文章访问数: 3460
- PDF下载量: 55
- 被引次数: 0