搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上海软X射线自由电子激光上的复合速度成像谱仪

廖剑峰 封云飞 吴可非 陶建飞 朱文韬 黄健业 丁伯承 刘小井

引用本文:
Citation:

上海软X射线自由电子激光上的复合速度成像谱仪

廖剑峰, 封云飞, 吴可非, 陶建飞, 朱文韬, 黄健业, 丁伯承, 刘小井

Composite velocity imaging spectrometer on Shanghai soft X-ray free electron laser facility

LIAO Jianfeng, FENG Yunfei, WU Kefei, TAO Jianfei, ZHU Wentao, HUANG Jianye, DING Bocheng, LIU Xiaojing
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 时间和角度分辨的光电离实验能够跟踪原子分子的几何构型和电子态演化, 这需要在自由电子激光中测量电子离子全空间角分布. 本文报道在上海软X射线自由电子激光装置上的复合速度成像谱仪的首次实验结果. 在263.8 eV下, 用自由电子激光电离Kr和CCl4样品, 通过Andor和TPX3CAM两台相机分别获得电子动量图像与离子质谱. Kr的3p, 3d, 4p光电子及俄歇电子峰的强度与前人实验符合, 角分布参数β与前人计算符合. 同样, CCl4分子 Cl的2p光电子、2p俄歇电子及价壳层电子的角分布也与已有计算结果符合良好. 采用TPX3CAM相机测量了碎片离子的动量分布, 揭示了CCl4的光解离路径. 结果表明, 复合速度成像谱仪在实验中兼具全立体角收集与高分辨率优势, 为自由电子激光光诱导动力学研究提供了可靠的实验平台.
    Temporal- and angular-resolved photoionization experiments are essential for probing the geometric configuration and electronic state evolution of atoms and molecules, which requires measuring the full spatial angular distributions of electrons and ions in free electron laser (FEL) experiments. Here, we present the first experimental results from the composite velocity imaging spectrometer (CpVMI) on the Shanghai soft X-ray free electron laser facility (SXFEL). The study demonstrates its ability to capture energy and angular information of electrons and ions with high resolution and full solid-angle collection.Krypton (Kr) atoms and carbon tetrachloride (CCl4) molecules are ionized using FEL pulses at 263.8 eV. Electron momentum images are recorded with an Andor Zyla 4.2 PLUS camera, and ion time-of-flight mass spectra and momentum distributions are acquired using a TPX3CAM. For Kr, the electron spectrum contains peaks from 3p, 3d, and 4p photoionization, as well as the Auger electrons from 3d and 3p levels. The measured anisotropy parameters (β) of these electrons show good agreement with previous theoretical Hartree-Fock calculations. The ion abundance in the time-of-flight mass spectra of Kr is consistent with the ratio derived from the intensities of the corresponding photoelectron peaks.For CCl4, the electron spectrum contains Cl 2p photoelectrons, 2p Auger electrons, and valence-shell photoelectrons, with their angular distribution parameters also aligning with theoretical predictions. The TPX3CAM can directly measure the momenta of fragment ions without the need of inverse Abel transformation. By integrating the high-resolution flight time mass spectrometry and momentum imaging data obtained from TPX3CAM, we successfully visualize and analyze the key photodissociation pathways of CCl4 molecules under the action of soft X-ray FEL. In particular, it can distinguish between direct two-body dissociation and multi-step dissociation processes, and observe the unique angular distributions and kinetic energy release characteristics of different dissociation channels.In conclusion, the experimental results clearly show that the CpVMI fully meets the technical requirements for FEL user experiments in terms of energy, angular distribution, and momentum measurement, providing a platform for FEL light-induced dynamics research. Future enhancements, including improved light focusing and the use of supersonic molecular beams, are expected to further improve the performance of the instrument.
  • 图 1  复合速度成像谱仪示意图, 其中气体样品通过超声分子束或者空心针注入主腔, 气体样品与光相互作用后, 产生的电子和离子在电场的引导下飞行到两端的荧光屏探测器, 利用相机记录实验图像

    Fig. 1.  Schematic diagram of the velocity imaging spectrometer. The gas sample is injected into the main chamber through an ultrasonic molecular beam or a hollow needle. After interacting with the light, the electrons and ions produced by the gas sample fly to the fluorescent screen detectors at both ends under the guidance of an electric field. The experimental images are recorded by two cameras.

    图 2  Kr的光电子图像 (a) 图像左半部分是原始图像, 右半部分是反阿贝尔变换后的动量谱, 中间红色的双箭头表示自由电子激光的极化方向; (b) 将动量谱全角度积分后得到的电子能谱

    Fig. 2.  Photoelectron images of Kr: (a) The left half of the image is the raw image, and the right half is the momentum spectrum obtained after the inverse Abel transformation. The red double-headed arrow in the middle indicates the polarization direction of the free electron laser. (b) The electron energy spectrum obtained by integrating the momentum spectrum over all angles.

    图 3  Kr的飞行时间质谱

    Fig. 3.  ToF mass spectrum of Kr.

    图 4  CCl4的光电子图像 (a) 图像左半部分是原始图像, 右半部分是经反阿贝尔变换后得到的动量谱, 中间红色的双箭头表示自由电子激光的极化方向; (b) 将动量谱全角度积分后得到的电子能谱

    Fig. 4.  Photoelectron images of CCl4: (a) The left half of the image is the raw image, and the right half is the momentum spectrum obtained after the inverse Abel transformation. The red double-headed arrow in the middle indicates the polarization direction of the free electron laser. (b) The electron energy spectrum obtained by integrating the momentum spectrum over all angles.

    图 5  (a) CCl4的飞行时间质谱; (b)—(g) 灰色区间内的离子二维动量切片

    Fig. 5.  (a) The ToF mass spectrum of CCl4; (b)–(g) the ion momentum images within the gray area of the mass spectrum.

    表 1  Kr和CCl4的光电子以及俄歇电子角分布

    Table 1.  Angular distribution of photoelectrons and Auger electrons of Kr and CCl4.

    样品名称 Kr CCl4-Cl
    能级 3p 3p Aug 3d 3d sat 4p 2p 2p Aug 3p
    βa 0.15 –0.16 0.93 0.75 1.5 0.96 0.05 1.63
    βb[39] 0.5 0.8 1.5 1.2 1.6
    下载: 导出CSV
  • [1]

    赵振堂, 冯超 2018 物理 47 481

    Zhao Z T, Feng C 2018 Physics 47 481

    [2]

    Huang S, Ding Y, Feng Y, Hemsing E, Huang Z, Krzywinski J, Lutman A A, Marinelli A, Maxwell T J, Zhu D 2017 Phys. Rev. Lett. 119 154801Google Scholar

    [3]

    Ackermann W, Asova G, Ayvazyan V, Azima A, Baboi N, Bähr J, Balandin V, Beutner B, Brandt A, Bolzmann A, et al. 2007 Nat. Photonics 1 336Google Scholar

    [4]

    仲银鹏, 杨霞 2024 物理学报 73 194101Google Scholar

    Zhong Y P, Yang X 2024 Acta Phys. Sin. 73 194101Google Scholar

    [5]

    Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F J, et al. 2010 Nat. Photonics 4 641Google Scholar

    [6]

    Ishikawa T, Aoyagi H, Asaka T, Asano Y, Azumi N, Bizen T, Ego H, Fukami K, Fukui T, Furukawa Y, Goto S, et al. 2012 Nature Photonics 6 540Google Scholar

    [7]

    Allaria E, Castronovo D, Cinquegrana P, Craievich P, Dal Forno M, Danailov M B, D'Auria G, Demidovich A, De Ninno G, Di Mitri S, et al. 2013 Nat. Photonics 7 913Google Scholar

    [8]

    Kang H S, Min C K, Heo H, Kim C, Yang H, Kim G, Nam I, Baek S Y, Choi H J, Mun G, et al. 2017 Nat. Photonics 11 708Google Scholar

    [9]

    Milne C J, Schietinger T, Aiba M, Alarcon A, Alex J, Anghel A, Arsov V, Beard C, Beaud P, Bettoni S, et al. 2017 Appl. Sci. 7 720Google Scholar

    [10]

    Weise H, Decking W 2017 FEL2017 Santa Fe, USA, August

    [11]

    Zhao Z T, Wang D, Gu Q, Yin L X, Fang G, Gu M, Leng Y B, Zhou Q, Liu B, Tang C, Huang W, Liu Z, Jiang H D 2017 Synchrotron Radiat. News 30 29

    [12]

    Halavanau A, Decker F J, Emma C, Sheppard J, Pellegrini C 2019 J. Synchrotron Radiat. 26 635Google Scholar

    [13]

    Liu T, Huang N S, Yang H X, Qi Z, Zhang K Q, Gao Z F, Chen S, Feng C, Zhang W, Luo H, Fu X X, Liu H, Faatz B, Deng H X, Liu B, Wang D, Zhao Z T 2023 Front. Phys. 11 1172368Google Scholar

    [14]

    Zhaunerchyk V, Kamińska M, Mucke M, Squibb R J, Eland J H D, Piancastelli M N, Frasinski L J, Grilj J, Koch M, McFarland B K, et al. 2015 J. Phys. B At. Mol. Opt. 48 244003Google Scholar

    [15]

    Liu X J, Miao Q, Gel'mukhanov F, Patanen M, Travnikova O, Nicolas C, Ågren H, Ueda K, Miron C 2015 Nat. Photonics 9 120Google Scholar

    [16]

    Öhrwall G, Karlsson P, Wirde M, Lundqvist M, Andersson P, Ceolin D, Wannberg B, Kachel T, Dürr H, Eberhardt W, Svensson S 2011 J. Electron Spectrosc. 183 125Google Scholar

    [17]

    Patanen M, Svensson S, Martensson N 2015 J. Electron Spectrosc. 200 78Google Scholar

    [18]

    Hikosaka Y, Sawa M, Soejima K, Shigemasa E 2014 J. Electron Spectrosc. 192 69Google Scholar

    [19]

    刘小井, 池华敬, 肖志松 2017 中国科学: 物理学, 力学, 天文学 47 033003

    Liu X J, CHI H, XIAO Z 2017 Sci. Sin. Phys. Mech. Astron. 47 033003

    [20]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [21]

    Kastirke G, Schöffler M S, Weller M, Rist J, Boll R, Anders N, Baumann T M, Eckart S, Erk B, De Fanis A, et al. 2020 Phys. Rev. Lett. 125 163201Google Scholar

    [22]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477Google Scholar

    [23]

    O’Keeffe P, Feyer V, Bolognesi P, Coreno M, Callegari C, Cautero G, Moise A, Prince K C, Richter R, Sergo R, Alagia M, de Simone M, Kivimäki A, Devetta M, Mazza T, Piseri P, Lyamayev V, Katzy R, Stienkemeier F, Ovcharenko Y, Möller T, Avaldi L 2012 Nucl. Instrum. Meth. B 284 69Google Scholar

    [24]

    Skruszewicz S, Passig J, Przystawik A, Truong N X, Köther M, Tiggesbäumker J, Meiwes-Broer K H 2014 Int. J. Mass Spectrom. 365 338

    [25]

    Kling N G, Paul D, Gura A, Laurent G, De S, Li H, Wang Z, Ahn B, Kim C H, Kim T K, Litvinyuk I V, Cocke C L, Ben-Itzhak I, Kim D, Kling M F 2014 J. Instrum. 9 P05005Google Scholar

    [26]

    Schomas D, Rendler N, Krull J, Richter R, Mudrich M 2017 J. Chem. Phys. 147 013942Google Scholar

    [27]

    Ding B C, Xu W Q, Wu R C, Feng Y F, Tian L F, Li X H, Huang J Y, Liu Z, Liu X J 2021 Appl. Sci. 11 10272Google Scholar

    [28]

    Feng Y F, Ding B C, Wu R C, Jin X, Wu K F, Liao J F, Huang J Y, Liu X J 2024 Appl. Sci. 14 2190Google Scholar

    [29]

    Dribinski V, Ossadtchi A, Mandelshtam V A, Reisler H 2002 Rev. Sci. Instrum. 73 2634Google Scholar

    [30]

    Zhao A, van Beuzekom M, Bouwens B, Byelov D, Chakaberia I, Cheng C, Maddox E, Nomerotski A, Svihra P, Visser J, Vrba V, Weinacht T 2017 Rev. Sci. Instrum. 88 113104Google Scholar

    [31]

    Poikela T, Plosila J, Westerlund T, Campbell M, Gaspari M D, Llopart X, Gromov V, Kluit R, Beuzekom M v, Zappon F, Zivkovic V, Brezina C, Desch K, Fu Y, Kruth A 2014 J. Instrum. 9 C05013Google Scholar

    [32]

    刘志, 万唯实, 王东 2024 自然杂志 46 161

    Liu Z, Wan W S, Wang D 2024 Chin. J. Nat. 46 161

    [33]

    Thompson A, Attwood D, Gulikson E, Howells M, Kim K J, Kirz J, Kortright J, Lindau I, Pianetta P, Robinson A 2001

    [34]

    Hickstein D D, Gibson S T, Yurchak R, Das D D, Ryazanov M 2019 Rev. Sci. Instrum. 90 065115Google Scholar

    [35]

    Palaudoux J, Lablanquie P, Andric L, Ito K, Shigemasa E, Eland J H D, Jonauskas V, Kučas S, Karazija R, Penent F 2010 Phys. Rev. A 82 043419Google Scholar

    [36]

    Jauhiainen J, Kivimaki A, Aksela S, Sairanen O P, Aksela H 1995 J. Phys. B At. Mol. Opt. 28 4091Google Scholar

    [37]

    Tamenori Y, Okada K, Tanimoto S, Ibuki T, Nagaoka S, Fujii A, Haga Y, Suzuki I H 2003 J. Phys. B At. Mol. Opt. 37 117

    [38]

    Tamenori Y, Okada K, Nagaoka S, Ibuki T, Tanimoto S, Shimizu Y, Fujii A, Haga Y, Yoshida H, Ohashi H, Suzuki I H 2002 J. Phys. B At. Mol. Opt. 35 2799Google Scholar

    [39]

    Yeh J J, Lindau I 1985 At. Data Nucl. Data 32 1Google Scholar

    [40]

    Fournier P G, Comtet G, Fournier J, Svensson S, Karlsson L, Keane M P, Naves de Brito A 1989 Phys. Rev. A 40 163Google Scholar

    [41]

    Ohta T, Kuroda H 1976 Bull. Chem. Soc. Jpn. 49 2939Google Scholar

    [42]

    Kime Y J, Driscoll D C, Dowben P A 1987 J. Chem. Soc. Faraday Trans. 2: Mol. Chem. Phys. 83 403

    [43]

    Tsuji M, Furusawa M, Mizuguchi T, Muraoka T, Nishimura Y 1992 J. Chem. Phys. 97 245Google Scholar

    [44]

    Dos Santos A C F, Maciel J B, Rocha A B, de Souza G G B 2024 Atoms 12 74Google Scholar

  • [1] 聂勇敢, 高梓宸, 佟亚军, 范家东, 刘功发, 江怀东. 上海软X射线自由电子激光单脉冲成像定时的设计与实现. 物理学报, doi: 10.7498/aps.73.20240383
    [2] 李慧, 谭芳蕊, 尹皓玉, 马钺洋, 吴晓斌. 基于匀光管的极紫外消相干和光强均匀化仿真研究. 物理学报, doi: 10.7498/aps.73.20240335
    [3] 杜小娇, 魏龙, 孙羽, 胡水明. 自由电子激光制备高强度亚稳态氦原子和类氦离子. 物理学报, doi: 10.7498/aps.73.20240554
    [4] 仲银鹏, 杨霞. 基于自由电子激光的散射技术及谱学方法进展. 物理学报, doi: 10.7498/aps.73.20240930
    [5] 牟家连, 吕军光, 孙希磊, 兰小飞, 黄永盛. 环形正负电子对撞机带电粒子鉴别的飞行时间探测器. 物理学报, doi: 10.7498/aps.72.20222271
    [6] 贺书凯, 齐伟, 矫金龙, 董克攻, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 张辉, 沈百飞, 谷渝秋. 基于带电粒子活化法开展的SGⅡ-U皮秒激光质子加速实验研究. 物理学报, doi: 10.7498/aps.67.20181504
    [7] 宋文娟, 郭福明, 陈基根, 杨玉军. 双色高频激光作用下原子低阶次谐波的理论研究. 物理学报, doi: 10.7498/aps.67.20172129
    [8] 黎明, 杨兴繁, 许州, 束小建, 鲁向阳, 黄文会, 王汉斌, 窦玉焕, 沈旭明, 单李军, 邓德荣, 徐勇, 柏伟, 冯第超, 吴岱, 肖德鑫, 王建新, 罗星, 周奎, 劳成龙, 闫陇刚, 林司芬, 张鹏, 张浩, 和天慧, 潘清, 李相坤, 李鹏, 刘宇, 杨林德, 刘婕, 张德敏, 李凯, 陈亚男. 太赫兹自由电子激光的受激饱和实验. 物理学报, doi: 10.7498/aps.67.20172413
    [9] 郭晶, 郭福明, 陈基根, 杨玉军. 高频激光脉宽对原子光电子发射谱的影响. 物理学报, doi: 10.7498/aps.67.20172440
    [10] 贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋. 用于激光加速质子参数表征的带电粒子活化测谱技术. 物理学报, doi: 10.7498/aps.66.205201
    [11] 王 潜, 徐金强, 武 锦, 李永贵. 利用扫描近场红外显微镜对化学样品组分进行成像研究. 物理学报, doi: 10.7498/aps.52.298
    [12] 李治宽. 自由电子激光器中的电子阻尼运动. 物理学报, doi: 10.7498/aps.49.893
    [13] 李治宽. 自由电子激光的准Dirac方程. 物理学报, doi: 10.7498/aps.46.1349
    [14] 文双春. 新型Wiggler谐波自由电子激光. 物理学报, doi: 10.7498/aps.46.272
    [15] 祝家清. 自由电子激光的能量转换. 物理学报, doi: 10.7498/aps.45.52
    [16] 方洪烈, G. T. MOORE, M. O. SCULLY. 注入信号对自由电子激光的影响. 物理学报, doi: 10.7498/aps.34.17
    [17] 方洪烈, 傅淑芬, G. T. 穆尔. 自由电子激光器的稳定脉冲解. 物理学报, doi: 10.7498/aps.33.935
    [18] 尹元昭. 自由电子激光放大器的理论分析. 物理学报, doi: 10.7498/aps.32.1407
    [19] 杨金刚, 李卫江, 郭清江, 朱光华, 姜承烈. 带有磁分析器的半导体探测器带电粒子谱仪. 物理学报, doi: 10.7498/aps.23.52
    [20] 王璈, 李鹤年, 简而智, 萧健. 高能带电粒子直接产生电子对. 物理学报, doi: 10.7498/aps.17.263
计量
  • 文章访问数:  280
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-29
  • 修回日期:  2025-11-07
  • 上网日期:  2025-11-20

/

返回文章
返回