搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自由电子激光的散射技术及谱学方法进展

仲银鹏 冯稼泰 杨霞

引用本文:
Citation:

基于自由电子激光的散射技术及谱学方法进展

仲银鹏, 冯稼泰, 杨霞

Advances in Free-Electron-Laser based scattering techniques and spectroscopic methods

Yinpeng Zhong, Jiatai Feng, Xia Yang
PDF
导出引用
  • 自由电子激光(Free Electron Laser, FEL)凭借高相干性、高亮度、覆盖远红外至X射线波段的连续可调性,在科学研究、材料科学、生物医学、环境监测等众多领域有着广泛的应用前景。特别是X射线自由电子激光(X-ray Free-Electron Laser, XFEL)以其独特的超高亮度、超短脉冲、极好相干性,强力地推动了超快X射线散射和超快光谱学领域的发展。基于XFEL的超快散射技术不仅实现了对晶格动力学、电荷和自旋序的超快时间和动量分辨研究,还能够测量大动量转移范围的声子色散。将基于XFEL的超快散射与光谱学手段相结合,有望同时测量元激发能态变化及其相关的原子或序结构变化。基于XFEL的光谱学正尝试充分利用自放大自发辐射模式(Self Amplified Spontaneous Emission,SASE)的全带宽,以减少脉冲延展,最终实现时间和能量分辨接近傅里叶变换极限的光谱测量。基于XFEL的非线性光学技术为探测元激发开辟了新途径,正在发展的新方法有望为探索表面和界面过程、手性、纳米尺度传输提供独特的机会,并实现多维度芯能级光谱学。
    In 2005, the FLASH soft X-ray free-electron laser (FEL) in Hamburg, Germany, achieved its first lasing, marking the beginning of an intensive phase of global FEL construction. Subsequently, the United States, Japan, South Korea, China, Italy, and Switzerland have all commenced building this type of photon facility. Recently, the new generation of FEL has started to utilize superconducting acceleration technology to achieve high-repetition-rate pulse output, thereby improving experimental efficiency. Currently completed facilities include the European XFEL, with ongoing constructions of the LCLS-II in the United States and the SHINE facility in Shanghai. The Shenzhen Superconducting soft X-ray Free-electron Laser (S3FEL) is also in preparation.
    These FEL facilities generate coherent and tunable ultrashort pulses across the extreme ultraviolet to hard X-ray spectrum, advancing FEL-based scattering techniques such as ultrafast X-ray scattering, spectroscopy, and X-ray nonlinear optics, thereby transforming the way we study correlated quantum materials at ultrafast timescales.
    The Self-Amplified Spontaneous Emission (SASE) process in FEL leads to timing jitter between FEL pulses and the synchronized pump laser, impacting the accuracy of ultrafast time-resolved measurements. To address this issue, timing tools have been developed to measure these jitters and reindex each pump-probe signal after measurement. This success enables ultrafast X-ray diffraction (UXRD) to be first realized, a systematic study of Peierls distorted materials is demonstrated. Furthermore, the high flux of FEL pulses enable Fourier Transform Inelastic X-ray Scattering (FT-IXS) method, which allows the extraction the phonon dispersion curves throughout the entire Brillouin zone by applying the Fourier transform to the measured momentum dependent coherent phonon scattering signals, even when the system is in a non-equilibrium state.
    UXRD is typically employed to study ultrafast lattice dynamics, which requires hard X-ray wavelengths. In contrast, time resolved resonant elastic X-ray scattering (tr-REXS) in the soft X-ray regime has become a standard method for investigating nano-sized charge and spin orders in correlated quantum materials at ultrafast time scales.
    In correlated quantum materials, the interplay between electron and lattice dynamics represents another important research direction. In addition to Zhi-Xun Shen's successful demonstration of the combined tr-ARPES and UXRD method at SLAC, this paper also reports attempts to integrate UXRD with Resonant X-ray Emission Spectroscopy (RXES) for the simultaneous measurement of electronic and lattice dynamics.
    Resonant Inelastic X-ray Scattering (RIXS) is a powerful tool for studying elementary and collective excitations in correlated quantum materials. However, in FEL-based soft X-ray spectroscopy, the wavefront tilt introduced by the widely used grating monochromators inevitably stretches the FEL pulses, which degrades the time resolution. Therefore, the new design at FEL beamlines employs low line density gratings with long exit arms to reduce pulse stretch and achieve relatively high energy resolution. For example, the Heisenberg-RIXS instrument at the European XFEL achieves an energy resolution of 92 meV at the Cu L3 edge and approximately 150 fs time resolution.
    In recent years, scientists at SwissFEL's Furka station have drawn inspiration from femtosecond optical covariance spectroscopy to propose a new method for generating two-dimensional time-resolved Resonant Inelastic X-ray Scattering (2D tr-RIXS) spectra. This method involves real-time detection of single-shot FEL incident and scattered spectra, followed by deconvolution calculation to avoid photon waste and wavefront tilt caused by monochromator slits. The SQS experimental station at European XFEL, in 2023, features a 1D-XUV spectrometer that utilizes subtle variations in photon energy absorption across the sample to induce spatial energy dispersion. Using Wolter mirrors, it directly images spatially resolved fluorescence emission from the sample onto the detector to generate 2D tr-RIXS spectra without the need for deconvolution. However, this design is limited to specific samples. Currently, the S3FEL is designing a novel 2D tr-RIXS instrument that uses an upstream low line density grating monochromator to generate spatial dispersion of the beam spot, allowing the full bandwidth of SASE to project spatially dispersed photon energy onto the sample. Subsequently, a similar optical design to the 1D-XUV spectrometer will be employed to achieve two-dimensional tr-RIXS spectra, thereby expanding the applicability beyond specific liquid samples. These new instruments are designed to minimize pulse elongation by fully utilizing SASE's full bandwidth, approaching Fourier-transform-limited RIXS spectra in both time and energy resolution.
    Nonlinear X-ray optics techniques such as sum-frequency generation (SFG) and second-harmonic generation are being adapted for X-ray wavelengths, opening new avenues for probing elementary excitations. X-ray transient grating spectroscopy extends capabilities to study charge transport and spin dynamics on ultrafast timescales. The future developing of these scattering methods offer unique opportunities for probing dynamical events in a wide variety of systems, including surface and interface processes, chirality, nanoscale transport and the termed as multidimensional core-level spectroscopy.
  • [1]

    Rossbach J, Schneider J R, Wurth W. 2019 Phys. Rep. 808, 1–74.

    [2]

    Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F -J, Ding Y, Dowell D, Edstrom S, Fisher A, Frisch J, Gilevich S, Hastings J, Hays G, Hering Ph, Huang Z, Iverson R, Loos H, Messerschmidt M, Miahnahri A, Moeller S, Nuhn H D, Pile G, Ratner D, Rzepiela J, Schultz D, Smith T, Stefan P, Tompkins H, Turner J, Welch J, White W, Wu J, Yocky G, Galayda J. 2010 Nat. Photonics 4, 641-647.

    [3]

    Ishikawa T, Aoyagi H, Asaka T, Asano Y, Azumi N, Bizen T, Ego H, Fukami K, Fukui T, Furukawa Y, Goto S, Hanaki H, Hara T, Hasegawa T, Hatsui T, Higashiya A, Hirono T, Hosoda N, Ishii M, Inagaki T, Inubushi Y, Itoga T, Joti Y, Kago M, Kameshima T, Kimura H, Kirihara Y, Kiyomichi A, Kobayashi T, Kondo C, Kudo T, Maesaka H, Maréchal X M, Masuda T, Matsubara S, Matsumoto T, Matsushita T, Matsui S, Nagasono M, Nariyama N, Ohashi H, Ohata T, Ohshima T, Ono S, Otake Y, Saji C, Sakurai T, Sato T, Sawada K, Seike T, Shirasawa K, Sugimoto T, Suzuki S, Takahashi S, Takebe H, Takeshita K, Tamasaku K, Tanaka H, Tanaka R, Tanaka T, Togashi T, Togawa K, Tokuhisa A, Tomizawa H, Tono K, Wu S K, Yabashi M, Yamaga M, Yamashita A, Yanagida K, Zhang C, Shintake T, Kitamura H, Kumagai N. 2012 Nat. Photonics 6, 540-544.

    [4]

    Allaria E, Castronovo D, Cinquegrana P, Craievich P, Dal Forno M, Danailov M B, D'Auria G, Demidovich A, De Ninno G, Di Mitri S, Diviacco B, Fawley W M, Ferianis M, Ferrari E, Froehlich L, Gaio G, Gauthier D, Giannessi L, Ivanov R, Mahieu B, Mahne N, Nikolov I, Parmigiani F, Penco G, Raimondi L, Scafuri C, Serpico C, Sigalotti P, Spampinati S, Spezzani C, Svandrlik M, Svetina C, Trovo M, Veronese M, Zangrando D, Zangrando, M. 2013 Nat. Photonics 7, 913-918.

    [5]

    Wang H L, Yu Y, Chang Y, Su S, Yu S R, Li Q M, Tao K, Ding H L, Yang J Y, Wang G L, Che L, He Z G, Chen Z C, Wang X G, Zhang W Q, Dai D X, Wu G R, Yuan K J, Yang X M. 2018 J. Chem. Phys. 148, 124301.

    [6]

    Kang H S, Min C K, Heo H, Kim C, Yang H, Kim G, Nam I, Baek S Y, Choi H J, Mun G, Park B R, Suh Y J, Shin D C, Hu J, Hong J, Jung S, Kim S H, Kim K, Na D, Park S S, Park Y J, Han J H, Jung Y G, Jeong S H, Lee H G, Lee S, Lee S, Lee W W, Oh B, Suh H S, Parc Y W, Park S J, Kim M H, Jung N S, Kim Y C, Lee M S, Lee B H, Sung C W, Mok I S, Yang J M, Lee C S, Shin H, Kim J H, Kim Y, Lee J H, Park S Y, Kim J, Park J, Eom I, Rah S, Kim S, Nam K H, Park J, Park J, Kim S, Kwon S, Park S H, Kim K S, Hyun H, Hyun S N, Kim S, Hwang S M, Kim M J, Lim C Y, Yu C J, Kim B S, Kang T H, Kim K W, Kim S H, Lee H S, Lee H S, Park K H, Koo T Y, Kim D E, Ko I S. 2017 Nat. Photonics 11, 708-713.

    [7]

    Milne C J, Schietinger T, Aiba M, Alarcon A, Alex J, Anghel A, Arsov V, Beard C, Beaud P, Bettoni S, Bopp M, Brands H, Brönnimann M, Brunnenkant I, Calvi M, Citterio A, Craievich P, Csatari Divall M, Dällenbach M, D’Amico M, Dax A, Deng Y, Dietrich A, Dinapoli R, Divall E, Dordevic S, Ebner S, Erny C, Fitze H, Flechsig U, Follath R, Frei F, Gärtner F, Ganter R, Garvey T, Geng Z Q, Gorgisyan I, Gough C, Hauff A, Hauri C P, Hiller N, Humar T, Hunziker S, Ingold G, Ischebeck R, Janousch M, Juranić P, Jurcevic M, Kaiser M, Kalantari B, Kalt R, Keil B, Kittel C, Knopp G, Koprek W, Lemke H T, Lippuner T, Llorente Sancho D, Löhl F, Lopez-Cuenca C, Märki F, Marcellini F, Marinkovic G, Martiel I, Menzel R, Mozzanica A, Nass K, Orlandi G L, Ozkan Loch C, Panepucci E, Paraliev M, Patterson B, Pedrini B, Pedrozzi M, Pollet P, Pradervand C, Prat E, Radi P, Raguin J Y, Redford S, Rehanek J, Réhault J, Reiche S, Ringele M, Rittmann J, Rivkin L, Romann A, Ruat M, Ruder C, Sala L, Schebacher L, Schilcher T, Schlott V, Schmidt T, Schmitt B, Shi X T, Stadler M, Stingelin L, Sturzenegger W, Szlachetko J, Thattil D, Treyer Daniel M, Trisorio A, Tron W, Vetter S, Vicario C, Voulot D, Wang M T, Zamofing T, Zellweger C, Zennaro R, Zimoch E, Abela R, Patthey L, Braun H H. 2017 Appl. Sci. 7, 720.

    [8]

    Zhao Z T, Wang D, Gu Q, Yin L X, Fang G P, Gu M, Leng Y B, Zhou Q G, Liu B, Tang C X, Huang W H, Liu Z, Jiang H D. 2017 Synchrotron Radiat. News 30, 29-33.

    [9]

    Ball P. 2017 Nature 548, 7669.

    [10]

    Halavanau A, Decker F J, Emma C, Sheppard J, Pellegrini C. 2019 J. Synchrotron Radiat. 26, 635-646.

    [11]

    Zhu Z Y, Zhao Z T, Wang D, Liu Z, Li R X, Yin L X, Yang Z H. 2017 Santa Fe: Proceedings of the 38th International Free-Electron Laser Conference 20-25.

    [12]

    Simmermacher M, Moreno Carrascosa A, E Henriksen N, B Møller K, Kirrander A. 2019 J. Chem. Phys. 151, 174302.

    [13]

    Reich C, Gibbon P, Uschmann I, Förster E. 2000 Phys. Rev. Lett. 84, 4846.

    [14]

    Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A, Lefebvre E. 2013 Rev. Mod. Phys. 85, 1-48.

    [15]

    Zamponi F, Ansari Z, V. Korff Schmising C, Rothhardt P, Zhavoronkov N, Woerner M, Elsaesser T, Bargheer M, Trobitzsch-Ryll T, Haschke M. 2009 Appl. Phys. A 96, 51–58.

    [16]

    Rose-Petruck C, Jimenez R, Guo T, Cavalleri A, Siders C W, Rksi F, Squier J A, Walker B C, Wilson K R, Barty C P J. 1999 Nature 398, 310–312.

    [17]

    Cavalleri A, Tóth C, Siders C W, Squier J A, Ráksi F, Forget P, Kieffer J C. 2001 Phys. Rev. Lett. 87, 237401.

    [18]

    Sokolowski-Tinten K, Blome C, Blums J, Cavalleri A, Dietrich C, Tarasevitch A, Uschmann I, Förster E, Kammler M, Horn-von-Hoegen M, Von der Linde D. 2003 Nature 422, 287–289.

    [19]

    Fabricius N, Hermes P, Von der Linde D, Pospieszczyk A, Stritzker B. 1986 Solid State Commun. 58, 239-242.

    [20]

    Rethfeld B, Sokolowski-Tinten K, Von der Linde D, Anisimov S I. 2002 Phys. Rev. B 65, 092103.

    [21]

    Huang N S, Deng H X, Liu B, Wang D, Zhao Z T. 2021 The Innovation 2, 100097.

    [22]

    Zhao Z T, Wang D, Chen J H, Chen Z H, Deng H X, Ding J G, Feng C, Gu Q, Huang M M, Lan T H, Leng Y B, Li D G, Lin G Q, Liu B, Prat E, Wang X T, Wang Z S, Ye K R, Yu L Y, Zhang H O, Zhang J Q, Zhang M, Zhang M, Zhang T, Zhong S P, Zhou Q G. 2012 Nat. Photonics 6, 360–363.

    [23]

    Kondratenko A M, Saldin E L. 1980 Part. Accel. 10, 207-216.

    [24]

    Fritz D M, Reis D A, Adams B, Akre R A, Arthur J, Blome C, Bucksbaum P H, Cavalieri A L, Engemann S, Fahy S, Falcone R W, Fuoss P H, Gaffney K J, George M J, Hajdu J, Hertlein M P, Hillyard P B, Horn-von Hoegen M, Kammler M, Kaspar J, Kienberger R, Krejcik P, Lee S H, Lindenberg A M, Mcfarland B, Meyer D, Montagne T, Murray E D, Nelson A J, Nicoul M, Pahl R, Rudati J, Schlarb H, Siddons D P, Sokolowski-tinten K, Tschentscher TH, Von Der Linde D, Hastings J B. 2007 Science 315, 633–636.

    [25]

    Harmand, M, Coffee R, Bionta M R, Chollet M, French D, Zhu D, Fritz D M, Lemke H T, Medvedev N, Ziaja B, Toleikis S, Cammarata M. 2013 Nat. Photonics 7, 215–218.

    [26]

    Epp S W, Hada M, Zhong Y, Kumagai Y, Motomura K, Mizote S, Ono T, Owada S, Axford D, Bakhtiarzadeh S, Fukuzawa H, Hayashi Y, Katayama T, Marx A, Müller-Werkmeister H M, Owen R L, Sherrell D A, Tono K, Ueda K, Westermeier F, Miller R J D. 2017 Struct. Dyn. 4, 054308.

    [27]

    Krasniqi F S, Zhong Y, Epp S W, Foucar L, Trigo M, Chen J, Reis D A, Wang H L, Zhao J H, Lemke H T, Zhu D, Chollet M, Fritz D M, Hartmann R, Englert L, Strüder L, Schlichting I, Ullrich J. 2018 Phys. Rev. Lett. 120, 105501.

    [28]

    Chuang Y D, Lee W S, Kung Y F, Sorini A P, Moritz B, Moore R G, Patthey L, Trigo M, Lu D H, Kirchmann P S, Yi M, Krupin O, Langner M, Zhu Y, Zhou S Y, Reis D A, Huse N, Robinson J S, Kaindl R A, Schoenlein R W, Johnson S L, Först M, Doering D, Denes P, Schlotter W F, Turner J J, Sasagawa T, Hussain Z, Shen Z X, Devereaux T P. 2013 Phys. Rev. Lett. 110, 127404.

    [29]

    Först M, Beyerlein K R, Mankowsky R, Hu W, Mattoni G, Catalano S, Gibert M, Yefanov O, Clark J N, Frano A, Glownia J M, Chollet M, Lemke H, Moser B, Collins S P, Dhesi S S, Caviglia A D, Triscone J M, Cavalleri A. 2017 Phys. Rev. Lett. 118, 027401.

    [30]

    Doering D, Chuang Y D, Andresen N, Chow K, Contarato D, Cummings C, Domning E, Joseph J, Pepper J S, Smith B, Zizka G, Ford C, Lee W S, Weaver M, Patthey L, Weizeorick J, Hussain Z, Denes P. 2011 Rev. Sci. Instrum. 82, 073303.

    [31]

    Jang H Y, Kim H D, Kim M, Park S H, Kwon S, Lee J Y, Park S Y, Park G, Kim S, Hyun H, Hwang S, Lee C S, Lim C Y, Gang W, Kim M, Heo S, Kim J, Jung G, Kim S, Park J, Kim J, Shin H, Park J, Koo T Y, Shin H J, Heo H, Kim C, Min C, Han J H, Kang H S, Lee H S, Kim K S, Eom I, Rah S. 2020 Rev. Sci. Instrum. 91, 083904.

    [32]

    Trigo M, Fuchs M, Chen J, Jiang M P, Cammarata M, Fahy S, Fritz D M, Gaffney K, Ghimire S, Higginbotham A, Johnson S L, Kozina M E, Larsson J, Lemke H, Lindenberg A M, Ndabashimiye G, Quirin F, Sokolowski-Tinten K, Uher C, Wang G, Wark J S, Zhu D, Reis D A. 2013 Nat. Phys. 9, 790–794.

    [33]

    Zhu D L, Robert A, Henighan T, T. Lemke H, Chollet M, Glownia J M, A. Reis D, Trigo M. 2015 Phys. Rev. B 92, 054303.

    [34]

    Engel R Y, Miedema P S, Turenne D, Vaskivskyi I, Brenner G, Dziarzhytski S, Kuhlmann M, Schunck J O, Döring F, Styervoyedov A, Parkin S S P, David C, Schüßler-Langeheine C, Dürr H A, Beye M. 2020 Appl. Sci. 10, 6947.

    [35]

    Gerber S, Yang S L, Zhu D, Soifer H, Sobota J A, Rebec S, Lee J J, Jia T, Moritz B, Jia C, Gauthier A, Li Y, Leuenberger D, Zhang Y, Chaix L, Li W, Jang H, Lee J S, Yi M, Dakovski G L, Song S, Glownia J M, Nelson S, Kim K W, Chuang Y D, Hussain Z, Moore R G, Devereaux T P, Lee W S, Kirchmann P S, Shen Z X. 2017 Science 357, 71–75.

    [36]

    Krasniqi F S, Zhong Y P, Reis D A. Scholz M, Hartmann R, Hartmann A, Rolles D, Rudenko A, Epp S W, Foucar L, Trigo M, Fuchs M, Fritz D M, Cammarata M, Zhu D L, Lemke H, Braune M, Ilchen M, Larsson J, Techert S, Strüder L, Schlichting L, Ullrich J. 2012 Research in Optical Sciences, ICUSD 3–5.

    [37]

    Zastrau U, Appel K, Baehtz C, Baehr O, Batchelor L, Berghäuser A, Banjafar M, Brambrink E, Cerantola V, Cowan T E, Damker H, Dietrich S, Di Dio Cafiso S, Dreyer J, Engel H -O, Feldmann T, Findeisen S, Foese M, Fullà Marsà D, Göde S, Hassan M, Hauser J, Herrmannsdörfer T, Höppner H, Kaa J, Kaever P, Knöfel K, Konôpková Z, Laso García A, Liermann H -P, Mainberger J, Makita M, Martens E -C, McBride E E, Möller D, Nakatsutsumi M, Pelka A, Plückthun C, Prescher C, Preston T, Röper M, Schmidt A, Seidel W, Schwinkendorf J -P, Schölmerich M, Schramm U, Schropp A, Strohm C, Sukharnikov K, Talkovski P, Thorpe I, Toncian M, Toncian T, Wollenweber L, Yamamoto S, Tschentscher T. 2021 J. Synchrotron Radiat. 28, 1393–1416.

    [38]

    Wollenweber L, Preston T R, Descamps A, Cerantola V, Comley A, Eggert J H, Fletcher L B, Geloni G, Gericke D O, Glenzer S H, Göde S, Hastings J, Humphries O S, Jenei A, Karnbach O, Konopkova Z, Loetzsch R, Marx-Glowna B, McBride E E, McGonegle D, Monaco G, Ofori-Okai B K, Palmer C A J, Plückthun C, Redmer R, Strohm C, Thorpe I, Tschentscher T, Uschmann I, Wark J S, White T G, Appel K, Gregori G, Zastrau U. 2021 Rev. Sci. Instrum. 92, 013101.

    [39]

    Dean M P M, Cao Y, Liu X, Wall S, Zhu D, Mankowsky R, Thampy V, Chen X M, Vale J G, Casa D, Kim J, Said A H, Juhas P, Alonso-Mori R, Glownia J M, Robert A, Robinson J, Sikorski M, Song S, Kozina M, Lemke H, Patthey L, Owada S, Katayama T, Yabashi M, Tanaka Y, Togashi T, Liu J, Serrao C R, Kim B J, Huber L, Chang C L, McMorrow D F, Först M, Hill J P. 2016 Phys. Rev. Lett. 116, 147201.

    [40]

    Gerasimova N, La Civita D, Samoylova L, Vannoni M, Villanueva R, Hickin D, Carley R, Gort R, Van Kuiken B E, Miedema P, Le Guyarder L, Mercadier L, Mercurio G, Schlappa J, Teichman M, Yaroslavtsev A, Sinna H, Scherza A. 2022 J. Synchrotron Radiat. 29, 1299–1308.

    [41]

    Tollerud J O, Sparapassi G, Montanaro A, Asban S, Glerean F, Giusti F, Marciniak A, Kourousias G, Billè F, Cilento F, Mukamel S, Fausti D. 2019 Proc. Natl. Acad. Sci. 116, 5383–5386.

    [42]

    Chergui M, Beye M, Mukamel S, Svetina C, Masciovecchio C. 2023 Nat. Rev. Phys. 5, 578–596.

    [43]

    Harter J W, Zhao Z Y, Yan J Q, Mandrus D G, Hsieh D. 2017 Science 356, 295–299.

    [44]

    Lam R K, Raj S L, Pascal T A, Pemmaraju C D, Foglia L, Simoncig A, Fabris N, Miotti P, Hull C J, Rizzuto A M, Smith J W, Mincigrucci R, Masciovecchio C, Gessini A, Allaria E, De Ninno G, Diviacco B, Roussel E, Spampinati S, Penco G, Di Mitri S, Trovò M, Danailov M, Christensen S T, Sokaras D, Weng T C, Coreno M, Poletto L, Drisdell W S, Prendergast D, Giannessi L, Principi E, Nordlund D, Saykally R J, Schwartz C P. 2018 Phys. Rev. Lett. 120, 23901.

    [45]

    Zhao L, Belvin C A, Liang R, Bonn D A, Hardy W N, Armitage N P, Hsieh D. 2017 Nat. Phys. 13, 250–254.

    [46]

    Uzundal C B, Jamnuch S, Berger E, Woodahl C, Manset P, Hirata Y, Sumi T, Amado A, Akai H, Kubota Y, Owada S, Tono K, Yabashi M, Freeland J W, Schwartz C P, Drisdell W S, Matsuda I, Pascal T A, Zong A, Zuerch M. 2021 Phys. Rev. Lett. 127, 237402.

    [47]

    Patterson B D. 2010 SLAC Technical Note SLAC-TN-10-026.

    [48]

    Glover T E, Fritz D M, Cammarata M, Allison T K, Coh S, Feldkamp J M, Lemke H, Zhu D, Feng Y, Coffee R N, Fuchs M, Ghimire S, Chen J, Shwartz S, Reis D A, Harris S E, Hastings J B. 2012 Nature 488, 603–608.

    [49]

    Rottke H, Engel R Y, Schick D, Schunck J O, Miedema P S, Borchert M C, Kuhlmann M, Ekanayake N, Dziarzhytski S, Brenner G, Eichmann U, von Korff Schmising C, Beye M, Eisebitt S. 2022 Sci. Adv. 8, 5127.

    [50]

    Beye M. 2021 Nat. Photonics 15, 490–492.

    [51]

    Bencivenga F., Mincigrucci R, Capotondi F, Foglia L, Naumenko D, Maznev A A, Pedersoli E, Simoncig A, Caporaletti F, Chiloyan V, Cucini R, Dallari F, Duncan R A, Frazer T D, Gaio G, Gessini A, Giannessi L, Huberman S, Kapteyn H, Knobloch J, Kurdi G, Mahne N, Manfredda M, Martinelli A, Murnane M, Principi E, Raimondi L, Spampinati S, Spezzani C, Trovò M, Zangrando M, Chen G, Monaco G, Nelson K A, Masciovecchio C. 2019 Sci. Adv. 5, 5805.

    [52]

    Mincigrucci R, Foglia L, Naumenko D, Pedersoli E, Simoncig A, Cucini R, Gessini A, Kiskinova M, Kurdi G, Mahne N, Manfredda M, Nikolov I P, Principi E, Raimondi L, Zangrando M, Masciovecchio C, Capotondi F, Bencivenga F. 2018 Nucl. Instrum. Meth. A 907, 132–148.

    [53]

    Rouxel J R, Fainozzi D, Mankowsky R, Rösner B, Seniutinas G, Mincigrucci R, Catalini S, Foglia L, Cucini R, Döring F, Kubec A, Koch F, Bencivenga F, Al Haddad A, Gessini A, A. Maznev A, Cirelli C, Gerber S, Pedrini B, F. Mancini G, Razzoli E, Burian M, Ueda H, Pamfilidis G, Ferrari E, Deng Y P, Mozzanica A, J. M. Johnson P, Ozerov D, Izzo M G, Bottari C, Arrell C, Divall E J, Zerdane S, Sander M, Knopp G, Beaud P, T. Lemke H, J. Milne C, David C, Torre R, Chergui M, A. Nelson K, Masciovecchio C, Staub U, Patthey L, Svetina C. 2021 Nat. Photonics 15, 499–503.

    [54]

    Jonnard P, André J M, Le Guen K, Le, Wu M Y, Principi E, Simoncig A, Gessini A, Mincigrucci R, Masciovecchio C, Peyrusse O. 2017 Struct. Dyn. 4, 054306.

    [55]

    Foglia L, Mincigrucci R, Maznev A A, Baldi G, Capotondi F, Caporaletti F, Comin R, De Angelis D, Duncan R A, Fainozzi D, Kurdi G, Li J, Martinelli A, Masciovecchio C, Monaco G, Milloch A, Nelson K A, Occhialini C A, Pancaldi M, Pedersoli E, Pelli-Cresi J S, Simoncig A, Travasso F, Wehinger B, Zanatta M, Bencivenga F. 2023 Photoacoustics 29, 100453.

    [56]

    Sumi T, Horio M, Senoo T, Wada T, Tsujikawa Y, Zhang X, Manset P, Araki M, Hirata Y, Drisdell W S, Freeland J W, Amado A, Zuerch M, Kubota Y, Owada S, Tono K, Yabashi M, Schwartz C P, Matsuda I. 2022 E-j. Surf. Sci. Nanotechnol. 20, 31-35.

    [57]

    Robin Y E, Oliver A, Kaan A, Uwe B, Jens B, Robert C Michele C, Valentin C, Gheorghe S C, Christian D, Florian D, Andrea E, Natalia G, Frank de G, Loïc L G, Oliver S H, Manuel I, Emmanuelle J, Adam K, Tim L, Charles-Henri L, Jan L, Jonathan P M, Laurent M, Giuseppe M, Piter S M, Katharina O, Bastian P, Benedikt R, Kai R, Nico R, Andreas S, Justine S, Markus S, Jan O S, Kiana S, Christian S, Simone T, Sam M V, Heiko W, Alexander A Y, Zhong Y, Martin B. 2023 Struct. Dyn. 10, 054501.

  • [1] 聂勇敢, 高梓宸, 佟亚军, 范家东, 刘功发, 江怀东. 上海软X射线自由电子激光单脉冲成像定时的设计与实现. 物理学报, doi: 10.7498/aps.73.20240383
    [2] 李慧, 谭芳蕊, 尹皓玉, 马钺洋, 吴晓斌. 基于匀光管的极紫外消相干和光强均匀化仿真研究. 物理学报, doi: 10.7498/aps.73.20240335
    [3] 李昀, 苏桐, 盛立志, 张蕊利, 刘舵, 刘永安, 强鹏飞, 杨向辉, 许泽方. 基于超快激光调制的纳秒脉冲X射线发射源. 物理学报, doi: 10.7498/aps.73.20231505
    [4] 杜小娇, 魏龙, 孙羽, 胡水明. 自由电子激光制备高强度亚稳态氦原子和类氦离子. 物理学报, doi: 10.7498/aps.73.20240554
    [5] 张少军, 郭智, 成加皿, 王勇, 陈家华, 刘志. 高重频硬X射线自由电子激光脉冲到达时间诊断方法研究. 物理学报, doi: 10.7498/aps.72.20222424
    [6] 郭晶, 郭福明, 陈基根, 杨玉军. 高频激光脉宽对原子光电子发射谱的影响. 物理学报, doi: 10.7498/aps.67.20172440
    [7] 宋文娟, 郭福明, 陈基根, 杨玉军. 双色高频激光作用下原子低阶次谐波的理论研究. 物理学报, doi: 10.7498/aps.67.20172129
    [8] 黎明, 杨兴繁, 许州, 束小建, 鲁向阳, 黄文会, 王汉斌, 窦玉焕, 沈旭明, 单李军, 邓德荣, 徐勇, 柏伟, 冯第超, 吴岱, 肖德鑫, 王建新, 罗星, 周奎, 劳成龙, 闫陇刚, 林司芬, 张鹏, 张浩, 和天慧, 潘清, 李相坤, 李鹏, 刘宇, 杨林德, 刘婕, 张德敏, 李凯, 陈亚男. 太赫兹自由电子激光的受激饱和实验. 物理学报, doi: 10.7498/aps.67.20172413
    [9] 王琛, 安红海, 乔秀梅, 方智恒, 熊俊, 王伟, 孙今人, 郑无敌. 软X射线激光汤姆逊散射实验尝试. 物理学报, doi: 10.7498/aps.62.135203
    [10] 赵诗华, 吕清正, 袁素英, 李英骏. 任意椭圆偏振激光场非线性汤姆逊散射的一般表述与X射线产生的优化条件. 物理学报, doi: 10.7498/aps.60.054209
    [11] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 129Xeq+激发Mo表面产生的X射线谱. 物理学报, doi: 10.7498/aps.59.6059
    [12] 张祥志, 许子健, 甄香君, 王勇, 郭智, 严睿, 常睿, 周冉冉, 邰仁忠. 基于软X射线谱学显微双能衬度图像的元素空间分布研究. 物理学报, doi: 10.7498/aps.59.4535
    [13] 黄文忠, 李玉同, 熊 勇, 张双根, 温贤伦, 洪 伟, 谷渝秋, 温天舒, 何颖玲. 超强激光超热电子激发的Kα X射线发射研究. 物理学报, doi: 10.7498/aps.57.111
    [14] 赵永涛, 肖国青, 张小安, 杨治虎, 陈熙萌, 李福利, 张艳萍, 张红强, 崔 莹, 绍剑雄, 徐 徐. 空心原子的K-x射线谱. 物理学报, doi: 10.7498/aps.54.85
    [15] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用. 物理学报, doi: 10.7498/aps.54.4979
    [16] 王 潜, 徐金强, 武 锦, 李永贵. 利用扫描近场红外显微镜对化学样品组分进行成像研究. 物理学报, doi: 10.7498/aps.52.298
    [17] 何绍堂, 何安, 淳于书泰, 张启仁, 顾元元, 倪元龙, 余松玉, 周正良. 类氖锗X射线激光光学特性研究. 物理学报, doi: 10.7498/aps.41.573
    [18] 何安, 何绍堂, 淳于书泰, 方泉玉, 邹喻, 徐远光. 线聚焦激光辐照Al靶所产生的紫外X射线谱线. 物理学报, doi: 10.7498/aps.40.1765
    [19] 章辉煌, 林尊琪, 何兴法, 张正泉, 王笑琴, 逯其荣, 谷忠民, 庄亦飞, 崔季秀, 余文炎, 李家明, 龚美霞, 张小秋, 雷志远, 杨斌洲, 赵卫. Mg微管靶喷口电子密度及X射线谱的时间分辨特性. 物理学报, doi: 10.7498/aps.38.1838
    [20] 郭常霖, 吉昂, 陶光仪. 原级X射线谱强度分布的定量测定. 物理学报, doi: 10.7498/aps.30.1351
计量
  • 文章访问数:  75
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-08-27

/

返回文章
返回