搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双色高频激光作用下原子低阶次谐波的理论研究

宋文娟 郭福明 陈基根 杨玉军

引用本文:
Citation:

双色高频激光作用下原子低阶次谐波的理论研究

宋文娟, 郭福明, 陈基根, 杨玉军

Theoretical investigation of atomic low-order harmonics under irradiation of two high frequency laser pulses

Song Wen-Juan, Guo Fu-Ming, Chen Ji-Gen, Yang Yu-Jun
PDF
导出引用
  • 通过数值求解含时薛定谔方程,研究了高频双色激光脉冲与原子相互作用产生的光辐射.研究表明,光辐射谱中既有基频光的谐波,又可观测到谐波能量附近的多个频率的光辐射产生,且辐射的峰值强度随着入射激光强度的提高呈指数增强,相邻辐射频率差值为入射的两束激光脉冲频率差.
    With the development of laser technology,the extreme ultraviolet and X-ray light sources can be obtained by utilizing the high-order harmonic radiation and the free electron laser.When an atom is irradiated by an intense highfrequency laser,many nonlinear phenomena can be observed,such as high-order harmonic emission,threshold ionization and ionization stability of atom,etc. The emission spectra with some new features appear when the atom is irradiated by a high-frequency laser pulse. The harmonic spectra with a clear cut-off plateau do not appear,and the three-step model is no longer valid for explaining the results.In addition to the odd-order harmonic radiation observed in the emission spectra,many super-Raman lines can be seen clearly.These radiations are generated from the transition between the dressed eigenstates of the atom. When the incident high-frequency laser pulse is strong enough,the peak of the harmonic splits into many sub-peaks. The generation of the sub-peaks of harmonic is due to the contributions from the rising and falling parts in the pulse. With the development of free electron laser technology,one can obtain a combined pulse with different frequencies. Many new two-color schemes are proposed for the experiment,such as the realization of two-photon spectrometer, pump-probe spectrometer.In this work,we investigate the optical radiation of the atom irradiated by a combined laser pulse,whose energies are higher than the ionization energy of the atom.It is found that the odd harmonics of the two high frequencies are shown in the emission spectra,and many satellite peaks appear in the vicinity of these odd harmonics.Furthermore,the intensities of the satellite peaks are enhanced exponentially with the increase of the incident laser intensity,and the frequency difference between the two adjacent peaks is the frequency difference between the two incident laser pulses.We study the time-frequency profile of the harmonic emission by analyzing the wavelets.With the two-color scheme one can achieve coherent soft X-ray and produce short coherent pulse. We also calculate the high-order harmonic spectrum of hydrogen in the two-color laser pulse,the multi-peak structure in the emission spectra can also be found,and the positions and intensity distribution of the emission peaks are consistent well with those from the one-dimensional calculation.In our two-color scheme,by changing the peak intensity and frequency of one of the combined laser pulses,the multi-plateau structure can be shown in the harmonic spectra.Taking advantage of the harmonic plateau,the soft X-ray radiation and ultra-short attosecond pulse chain can be generated.
      通信作者: 杨玉军, yangyj@jlu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA0403300)、国家自然科学基金(批准号:11774129,11274141,11627807,11534004)和吉林省自然科学基金(批准号:20170101153JC)资助的课题.
      Corresponding author: Yang Yu-Jun, yangyj@jlu.edu.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFA0403300), the National Natural Science Foundation of China (Grants Nos. 11774129, 11274141, 11627807, 11534004), and the Jilin Provincial Research Foundation for Basic Research, China (Grant No. 20170101153JC).
    [1]

    Ozaki T, Ganeev R A, Ishizawa A, Kanai T, Kuroda H 2002 Phys. Rev. Lett. 89 253902

    [2]

    Pert G J 2007 Phys. Rev. A 75 023808

    [3]

    Mcpherson A, Gibson G, Jara H, Johann U, Luk T S, Mcintyre I A, Boyer K, Rhodhes C K 1987 J. Opt. Soc. Am. B 4 595

    [4]

    Ferray M A, L'Huillier A, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31

    [5]

    Dromey B, Zepf M, Gopal A, Wei M S, Tatarakis M 2006 Nat. Phys. 2 456

    [6]

    Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F G, Ding Y, Dowell D, Edstrom S 2010 Nat. Photon. 4 641

    [7]

    Huang Z, Brachmann A, Decker F J, Ding Y, Dowell D, Emma P, Frisch J, Gilevich S, Hays G, Hering P, Iverson R, Loos H, Miahnahri A, Nuhn H D, Ratner D, Stupakov G, Turner J, Welch J 2010 Phys. Rev. Spec. Top. Acc. Beams 13 020703

    [8]

    Ishikawa T, Aoyagi H, Asaka T, Asano Y, Azumi N, Bizen T 2012 Nat. Photon. 6 540

    [9]

    Ackermann W, Asova G, Ayvazyan V, Azima A, Baboi N, Bahr J, Balandin V, Beutner B, Brandt A 2007 Nat. Photon. 1 336

    [10]

    Shintake T, Tanaka H, Hara T, Tanaka T, Togawa K, Yabashi M 2008 Nat. Photon. 2 555

    [11]

    Allaria E, Appio R, Badano L, Barletta W A, Bassanese S, Biedron S G, Borga A, Busetto E 2012 Nat. Photon. 6 699

    [12]

    Scott D J, Clarke J A, Baynham D E, Bayliss V, Bradshaw T, Burton G, Brummitt A, Carr S, Lintern A, Rochford J, Taylor O, Ivanyushenkov Y 2011 Phys. Rev. Lett. 107 174803

    [13]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L 2008 Science 320 1614

    [14]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [15]

    Cingoz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68

    [16]

    Fang L, Osipov T, Murphy B F, Rudenko A, Rolles D, Petrovic V S, Bostedt C, Bozek J D, Bucksbaum P H, Berrah N 2014 J. Phys. B: At. Mol. Opt. Phys. 47 124006

    [17]

    Minitti M P, Budarz J M, Kirrander A, Robinson J S, Ratner D, Lane T J, Zhu D, Glownia J M, Kozina M, Lemke H T, Sikorski M, Feng Y, Nelson S, Saita K, Stankus B, Northey T, Hastings J B, Weber P M 2015 Phys. Rev. Lett. 114 255501

    [18]

    Treusch R, Feldhaus J 2010 New J. Phys. 12 035015

    [19]

    Seddon E A, Clarke J A, Dunning D J, Masciovecchio C, Milne C J, Parmigiani F, Rugg D, Spence J C H, Thompson J C H, Ueda K, Vinko S M, Wark J S, Wurth W 2017 Rep. Prog. Phys. 80 115901

    [20]

    Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389

    [21]

    Zhou Z Y, Yuan J M 2008 Phys. Rev. A 77 063411

    [22]

    Cui X, Li S Y, Guo F M, Tian Y Y, Chen J G, Zeng S L, Yang Y J 2015 Acta Phys. Sin. 64 043201 (in Chinese) [崔鑫, 李苏宇, 郭福明, 田原野, 陈基根, 曾思良, 杨玉军 2015 物理学报 64 043201]

    [23]

    Bachau H, Budriga O, Dondera M, Florescu V 2013 Centr. Euro. J. Phys. 11 1091

    [24]

    Ebadi H, Keitel C H, Hatsagortsyan K Z 2011 Phys. Rev. A 83 063418

    [25]

    Tian Y Y, Guo F M, Zeng S L, Yang Y J 2013 Acta Phys. Sin. 62 113201 (in Chinese) [田原野, 郭福明, 曾思良, 杨玉军 2013 物理学报 62 113201]

    [26]

    Pont M, Gavrila M 1990 Phys. Rev. Lett. 65 2362

    [27]

    Gavrila M 2002 J. Phys. B: At. Mol. Opt. Phys. 35 R147

    [28]

    Wei S S, Li S Y, Guo F M, Yang Y J, Wang B 2013 Phys. Rev. A 87 063418

    [29]

    Hara T, Inubushi Y, Katayama T, Sato T, Tanaka H, Tanaka T, Togashi T, Togawa K, Tono K, Yabashi M, Ishikawa T 2013 Nat. Commun. 4 2919

    [30]

    Petralia A, Anania M P, Artioli M, Bacci A, Bellaveglia M, Carpanese M, Chiadroni E, Cianchi A, Ciocci F, Dattoli G, Giovenale D, Di Palma E, Di Pirro G P, Ferrario M, Giannessi L 2015 Phys. Rev. Lett. 115 014801

    [31]

    Wu Y K, Yan J, Hao H, Li J Y, Mikhailov S F, Popov V G, Vinokurov N A, Huang S, Wu J 2015 Phys. Rev. Lett. 115 184801

    [32]

    Couprie M E 2014 J. Elect. Spectro. Relat. Phenom. 196 3

    [33]

    Lutman A A, Coffee R, Ding Y, Huang Z, Krzywinski J, Maxwell T, Messerschmidt M, Nuhn H D 2013 Phys. Rev. Lett. 110 134801

    [34]

    Allaria E, Bencivenga F, Borghes R, Capotondi F, Castronovo D, Charalambous P, Danailov M B 2013 Nat. Commun. 4 2476

    [35]

    Schwartz E, Schwartz S 2015 Opt. Express 23 7471

    [36]

    Perrella C, Light P S, Anstie J D, Stace T M, Benabid F, Luiten A N 2013 Phys. Rev. A 87 013818

    [37]

    Ffushitani M, Hikosaka M, Matsuda A, Endo T, Shigemasa E, Nagasono M, Sato T, Togashi T, Yabashi M, Ishikawa T, Hishikawa A 2013 Phys. Rev. A 88 063422

    [38]

    Matsuoka L, Hasegawa S 2007 J. Opt. Soc. Am. B 24 2562

    [39]

    Liu M, Guo Y C, Wang B B 2015 Chin. Phys. B 24 073201

    [40]

    Antaris A L, Chen H, Cheng K, Sun Y, Hong G S, Qu C R, Diao S, Deng Z X, Hu X M, Zhang B, Zhang X D, Yaghi O K, Alamparambil Z R, Hong X C, Cheng Z, Dai H J 2016 Nat. Mater. 15 235

    [41]

    Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 24 1537

    [42]

    Song Y, Li S Y, Liu X S, Guo F M, Yang Y J 2013 Phys. Rev. A 88 053419

    [43]

    Zhou Z Y, Chu S I 2011 Phys. Rev. A 83 013405

    [44]

    Wang C C, Tian Y, Luo S, Roeterdink W G, Yang Y, Ding D, Okunishi M, Prmper P, Shimada K, Ueda K, Zhu R 2014 Phys. Rev. A 90 023405

    [45]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202

    [46]

    Zhang D Y, Li Q Y, Guo F M, Yang Y J 2016 Acta Phys. Sin. 65 223202 (in Chinese) [张頔玉, 李庆仪, 郭福明, 杨玉军 2016 物理学报 65 223202]

  • [1]

    Ozaki T, Ganeev R A, Ishizawa A, Kanai T, Kuroda H 2002 Phys. Rev. Lett. 89 253902

    [2]

    Pert G J 2007 Phys. Rev. A 75 023808

    [3]

    Mcpherson A, Gibson G, Jara H, Johann U, Luk T S, Mcintyre I A, Boyer K, Rhodhes C K 1987 J. Opt. Soc. Am. B 4 595

    [4]

    Ferray M A, L'Huillier A, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31

    [5]

    Dromey B, Zepf M, Gopal A, Wei M S, Tatarakis M 2006 Nat. Phys. 2 456

    [6]

    Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F G, Ding Y, Dowell D, Edstrom S 2010 Nat. Photon. 4 641

    [7]

    Huang Z, Brachmann A, Decker F J, Ding Y, Dowell D, Emma P, Frisch J, Gilevich S, Hays G, Hering P, Iverson R, Loos H, Miahnahri A, Nuhn H D, Ratner D, Stupakov G, Turner J, Welch J 2010 Phys. Rev. Spec. Top. Acc. Beams 13 020703

    [8]

    Ishikawa T, Aoyagi H, Asaka T, Asano Y, Azumi N, Bizen T 2012 Nat. Photon. 6 540

    [9]

    Ackermann W, Asova G, Ayvazyan V, Azima A, Baboi N, Bahr J, Balandin V, Beutner B, Brandt A 2007 Nat. Photon. 1 336

    [10]

    Shintake T, Tanaka H, Hara T, Tanaka T, Togawa K, Yabashi M 2008 Nat. Photon. 2 555

    [11]

    Allaria E, Appio R, Badano L, Barletta W A, Bassanese S, Biedron S G, Borga A, Busetto E 2012 Nat. Photon. 6 699

    [12]

    Scott D J, Clarke J A, Baynham D E, Bayliss V, Bradshaw T, Burton G, Brummitt A, Carr S, Lintern A, Rochford J, Taylor O, Ivanyushenkov Y 2011 Phys. Rev. Lett. 107 174803

    [13]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L 2008 Science 320 1614

    [14]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [15]

    Cingoz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68

    [16]

    Fang L, Osipov T, Murphy B F, Rudenko A, Rolles D, Petrovic V S, Bostedt C, Bozek J D, Bucksbaum P H, Berrah N 2014 J. Phys. B: At. Mol. Opt. Phys. 47 124006

    [17]

    Minitti M P, Budarz J M, Kirrander A, Robinson J S, Ratner D, Lane T J, Zhu D, Glownia J M, Kozina M, Lemke H T, Sikorski M, Feng Y, Nelson S, Saita K, Stankus B, Northey T, Hastings J B, Weber P M 2015 Phys. Rev. Lett. 114 255501

    [18]

    Treusch R, Feldhaus J 2010 New J. Phys. 12 035015

    [19]

    Seddon E A, Clarke J A, Dunning D J, Masciovecchio C, Milne C J, Parmigiani F, Rugg D, Spence J C H, Thompson J C H, Ueda K, Vinko S M, Wark J S, Wurth W 2017 Rep. Prog. Phys. 80 115901

    [20]

    Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389

    [21]

    Zhou Z Y, Yuan J M 2008 Phys. Rev. A 77 063411

    [22]

    Cui X, Li S Y, Guo F M, Tian Y Y, Chen J G, Zeng S L, Yang Y J 2015 Acta Phys. Sin. 64 043201 (in Chinese) [崔鑫, 李苏宇, 郭福明, 田原野, 陈基根, 曾思良, 杨玉军 2015 物理学报 64 043201]

    [23]

    Bachau H, Budriga O, Dondera M, Florescu V 2013 Centr. Euro. J. Phys. 11 1091

    [24]

    Ebadi H, Keitel C H, Hatsagortsyan K Z 2011 Phys. Rev. A 83 063418

    [25]

    Tian Y Y, Guo F M, Zeng S L, Yang Y J 2013 Acta Phys. Sin. 62 113201 (in Chinese) [田原野, 郭福明, 曾思良, 杨玉军 2013 物理学报 62 113201]

    [26]

    Pont M, Gavrila M 1990 Phys. Rev. Lett. 65 2362

    [27]

    Gavrila M 2002 J. Phys. B: At. Mol. Opt. Phys. 35 R147

    [28]

    Wei S S, Li S Y, Guo F M, Yang Y J, Wang B 2013 Phys. Rev. A 87 063418

    [29]

    Hara T, Inubushi Y, Katayama T, Sato T, Tanaka H, Tanaka T, Togashi T, Togawa K, Tono K, Yabashi M, Ishikawa T 2013 Nat. Commun. 4 2919

    [30]

    Petralia A, Anania M P, Artioli M, Bacci A, Bellaveglia M, Carpanese M, Chiadroni E, Cianchi A, Ciocci F, Dattoli G, Giovenale D, Di Palma E, Di Pirro G P, Ferrario M, Giannessi L 2015 Phys. Rev. Lett. 115 014801

    [31]

    Wu Y K, Yan J, Hao H, Li J Y, Mikhailov S F, Popov V G, Vinokurov N A, Huang S, Wu J 2015 Phys. Rev. Lett. 115 184801

    [32]

    Couprie M E 2014 J. Elect. Spectro. Relat. Phenom. 196 3

    [33]

    Lutman A A, Coffee R, Ding Y, Huang Z, Krzywinski J, Maxwell T, Messerschmidt M, Nuhn H D 2013 Phys. Rev. Lett. 110 134801

    [34]

    Allaria E, Bencivenga F, Borghes R, Capotondi F, Castronovo D, Charalambous P, Danailov M B 2013 Nat. Commun. 4 2476

    [35]

    Schwartz E, Schwartz S 2015 Opt. Express 23 7471

    [36]

    Perrella C, Light P S, Anstie J D, Stace T M, Benabid F, Luiten A N 2013 Phys. Rev. A 87 013818

    [37]

    Ffushitani M, Hikosaka M, Matsuda A, Endo T, Shigemasa E, Nagasono M, Sato T, Togashi T, Yabashi M, Ishikawa T, Hishikawa A 2013 Phys. Rev. A 88 063422

    [38]

    Matsuoka L, Hasegawa S 2007 J. Opt. Soc. Am. B 24 2562

    [39]

    Liu M, Guo Y C, Wang B B 2015 Chin. Phys. B 24 073201

    [40]

    Antaris A L, Chen H, Cheng K, Sun Y, Hong G S, Qu C R, Diao S, Deng Z X, Hu X M, Zhang B, Zhang X D, Yaghi O K, Alamparambil Z R, Hong X C, Cheng Z, Dai H J 2016 Nat. Mater. 15 235

    [41]

    Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X, Sun J Z 2007 Chin. Phys. Lett. 24 1537

    [42]

    Song Y, Li S Y, Liu X S, Guo F M, Yang Y J 2013 Phys. Rev. A 88 053419

    [43]

    Zhou Z Y, Chu S I 2011 Phys. Rev. A 83 013405

    [44]

    Wang C C, Tian Y, Luo S, Roeterdink W G, Yang Y, Ding D, Okunishi M, Prmper P, Shimada K, Ueda K, Zhu R 2014 Phys. Rev. A 90 023405

    [45]

    Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G, Yang Y J 2014 Chin. Phys. B 23 053202

    [46]

    Zhang D Y, Li Q Y, Guo F M, Yang Y J 2016 Acta Phys. Sin. 65 223202 (in Chinese) [张頔玉, 李庆仪, 郭福明, 杨玉军 2016 物理学报 65 223202]

  • [1] 黎明, 杨兴繁, 许州, 束小建, 鲁向阳, 黄文会, 王汉斌, 窦玉焕, 沈旭明, 单李军, 邓德荣, 徐勇, 柏伟, 冯第超, 吴岱, 肖德鑫, 王建新, 罗星, 周奎, 劳成龙, 闫陇刚, 林司芬, 张鹏, 张浩, 和天慧, 潘清, 李相坤, 李鹏, 刘宇, 杨林德, 刘婕, 张德敏, 李凯, 陈亚男. 太赫兹自由电子激光的受激饱和实验. 物理学报, 2018, 67(8): 084102. doi: 10.7498/aps.67.20172413
    [2] 郭晶, 郭福明, 陈基根, 杨玉军. 高频激光脉宽对原子光电子发射谱的影响. 物理学报, 2018, 67(7): 073202. doi: 10.7498/aps.67.20172440
    [3] 顾小卫. 带光速调管的高增益高次谐波振荡器自由电子激光模拟. 物理学报, 2013, 62(9): 094102. doi: 10.7498/aps.62.094102
    [4] 葛愉成. 高次谐波辐射光子的能量-激光相位关系研究. 物理学报, 2008, 57(5): 2899-2905. doi: 10.7498/aps.57.2899
    [5] 王 潜, 徐金强, 武 锦, 李永贵. 利用扫描近场红外显微镜对化学样品组分进行成像研究. 物理学报, 2003, 52(2): 298-301. doi: 10.7498/aps.52.298
    [6] 李治宽. 自由电子激光器中的电子阻尼运动. 物理学报, 2000, 49(5): 893-897. doi: 10.7498/aps.49.893
    [7] 李治宽. 自由电子激光的准Dirac方程. 物理学报, 1997, 46(7): 1349-1353. doi: 10.7498/aps.46.1349
    [8] 文双春. 新型Wiggler谐波自由电子激光. 物理学报, 1997, 46(2): 272-278. doi: 10.7498/aps.46.272
    [9] 祝家清. 自由电子激光的能量转换. 物理学报, 1996, 45(1): 52-57. doi: 10.7498/aps.45.52
    [10] 赵东焕. 自由电子激光中电子与辐射波相互作用有效时间的分析. 物理学报, 1996, 45(4): 573-579. doi: 10.7498/aps.45.573
    [11] 赵东焕, 雷仕湛. 自由电子激光辐射场的经典理论分析. 物理学报, 1996, 45(2): 192-200. doi: 10.7498/aps.45.192
    [12] 杨中海, 彭良福, 刘盛纲. 改型wiggler高次谐波自由电子激光的非线性理论分析. 物理学报, 1995, 44(7): 1064-1072. doi: 10.7498/aps.44.1064
    [13] 苟三奎. 带轴向引导磁场自由电子激光的控制参数. 物理学报, 1994, 43(9): 1441-1446. doi: 10.7498/aps.43.1441
    [14] 张毅波, 蒋华北. 一种新型短波长自由电子激光. 物理学报, 1992, 41(9): 1431-1435. doi: 10.7498/aps.41.1431
    [15] 张世昌. Raman自由电子激光实验的理论分析. 物理学报, 1988, 37(10): 1684-1689. doi: 10.7498/aps.37.1684
    [16] 刘盛纲, 孙雁. 渡越辐射自由电子激光中自发辐射与受激辐射的关系. 物理学报, 1988, 37(9): 1505-1509. doi: 10.7498/aps.37.1505
    [17] 张毅波. 切伦科夫自由电子激光中自发辐射与受激辐射的关系. 物理学报, 1987, 36(10): 1344-1348. doi: 10.7498/aps.36.1344
    [18] 方洪烈, G. T. MOORE, M. O. SCULLY. 注入信号对自由电子激光的影响. 物理学报, 1985, 34(1): 17-23. doi: 10.7498/aps.34.17
    [19] 方洪烈, 傅淑芬, G. T. 穆尔. 自由电子激光器的稳定脉冲解. 物理学报, 1984, 33(7): 935-942. doi: 10.7498/aps.33.935
    [20] 尹元昭. 自由电子激光放大器的理论分析. 物理学报, 1983, 32(11): 1407-1415. doi: 10.7498/aps.32.1407
计量
  • 文章访问数:  2933
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-26
  • 修回日期:  2017-11-07
  • 刊出日期:  2018-02-05

双色高频激光作用下原子低阶次谐波的理论研究

  • 1. 吉林大学原子与分子物理研究所, 长春 130012;
  • 2. 吉林省应用原子与分子光谱重点实验室, 长春 130012;
  • 3. 台州学院物理与电子工程学院物理与材料工程系, 台州 318000
  • 通信作者: 杨玉军, yangyj@jlu.edu.cn
    基金项目: 国家重点研发计划(批准号:2017YFA0403300)、国家自然科学基金(批准号:11774129,11274141,11627807,11534004)和吉林省自然科学基金(批准号:20170101153JC)资助的课题.

摘要: 通过数值求解含时薛定谔方程,研究了高频双色激光脉冲与原子相互作用产生的光辐射.研究表明,光辐射谱中既有基频光的谐波,又可观测到谐波能量附近的多个频率的光辐射产生,且辐射的峰值强度随着入射激光强度的提高呈指数增强,相邻辐射频率差值为入射的两束激光脉冲频率差.

English Abstract

参考文献 (46)

目录

    /

    返回文章
    返回