搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于匀光管的极紫外消相干和光强均匀化仿真研究

李慧 谭芳蕊 尹皓玉 马钺洋 吴晓斌

引用本文:
Citation:

基于匀光管的极紫外消相干和光强均匀化仿真研究

李慧, 谭芳蕊, 尹皓玉, 马钺洋, 吴晓斌

Simulation study of decoherence and light intensity uniformization for extreme ultraviolet of uniform light pipe

Li Hui, Tan Fang-Rui, Yin Hao-Yu, Ma Yue-Yang, Wu Xiao-Bin
PDF
HTML
导出引用
  • 自由电子激光光源(free electron laser, FEL)可发出波长为13.5 nm的极紫外(extreme ultra-violet, EUV)辐射, 在EUV光刻领域能够发挥重要作用. 但FEL自身的高相干特性以及类高斯光强轮廓分布特征, 会对成像带来不利影响, 无法满足EUV光刻领域成像应用需求. 本文通过计算模拟的方法, 设计了一种匹配FEL应用的、用于EUV波段去相干和光强均匀化的新型匀光管结构. 模拟结果显示, 针对波长为13.5 nm、直径200 μm、发散度20 mrad的FEL-EUV高斯光束, 采用新型匀光管结构, 与常规匀光管结构相比, 在同等长度和内径时, 具有更显著的去相干能力和光场均匀化作用. 当新型匀光管内径为1 mm、总长度不低于0.6 m、倾斜角度为10 mrad时, 高相干光场完全被扰乱, 实现低相干光输出. 并可获得均匀照明光场, 光强分布不均匀性数值从常规圆柱型匀光管的28.38降低至0.97. 同时, 相应能量传输效率为37.6%, 最大传输效率达到44.58%. 结果表明, 新型匀光管结构能够满足EUV辐射去相干应用需求, 同时可提高照明视场光强分布均匀性, 在EUV光刻领域及其他成像应用具有很大应用前景.
    Free electron laser (FEL) is a high-quality laser source with wavelengths ranging from short-wave X-ray to long-wave infrared ray. Extreme ultra-violet (EUV) radiation at λ = 13.5 nm emitted by FEL can be used in manufacturing integrated circuit, such as EUV lithography exposure and mask defect inspection. However, the high spatial coherence characteristics and similar Gauss intensity profile distribution of FEL source has a negative effect on imaging, and cannot meet the requirements of imaging applications in EUV lithography. In this work, a newly light pipe for decoherence and intensity uniformity in an EUV spectral range is designed through the simulation calculations. The new light pipe consists of two pairs of tilted elements which are symmetrically distributed in the y-z plane and x-z plane, respectively. In this way, the beam transmission divergence in two dimensions can be widened at the same time, and the disturbance of the ray transmission track and spatial phase distribution is increased, so as to achieve the uniformization of light intensity and the reduction of spatial coherence.The simulation results show that for an EUV Gaussian beam at λ = 13.5nm, with a diameter of 200 μm, and a divergence of 20 mrad, the newly designed light pipe has more significant decoherence and illumination field uniformity than the conventional light pipe structure. When the new light pipe has an inner diameter of 1mm, a total length of not less than 600 mm, and a tilt angle of 10mrad , a basically uniform illumination field can be obtained, the coherence is completely disordered, and the non-uniformity of light intensity distribution in the illumination field decreases to 0.97 from 28.38 achieved by conventional cylindrical light pipe. At the same time, the light power transmission efficiency is about 37.6% and the maximum transmission efficiency is about 44.58%. The uniformity can be further improved by increasing the number of reflections. When the inner diameter and tilted angle of the light pipe are unchanged, the length of the light pipe increases to 1m, the non-uniformity of intensity distribution at the illumination field further decreases to 0.90, and the light power transmission efficiency is about 22.35%. The results show that the newly designed light pipe structure can meet the application requirements of decoherence and improve the uniformity of illumination field at EUV wavelength range, and it has great application prospects in EUV lithography and other imaging applications.
      通信作者: 李慧, lihui@ime.ac.cn ; 吴晓斌, wuxiaobin@ime.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 62071464)和中国科学院前瞻战略科技先导项目(A类先导项目)资助的课题.
      Corresponding author: Li Hui, lihui@ime.ac.cn ; Wu Xiao-Bin, wuxiaobin@ime.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62071464) and the Foresight Strategic Science and Technology Pilot Project of the Chinese Academy of Sciences (Class A Pilot Project).
    [1]

    赵振堂, 戴志敏, 张文志, 刘波, 邓海啸, 张满洲, 田顺强 2023 复旦学报 62 293

    Zhao Z T, Dai Z M, Zhang W Z, Liu B, Deng H X, Zhang M Z, Tian S Q 2023 J. Fudan Univ. 62 293

    [2]

    杨家岳, 董文锐, 江凌, 袁开军, 王方军, 吴国荣, 乔德志, 张未卿, 杨学明 2023 中国科学: 化学 53 2103

    Yang J Y, Dong W R, Jiang L, Yuan K J, Wang F J, Wu G R, Qiao D Z, Zhang W Q, Yang X M 2023 Sci. Sin. Chim. 53 2103

    [3]

    吴嘉程, 蔡萌, 陆宇杰, 黄楠顺, 冯超, 赵振堂 2023 光学学报 43 2114002Google Scholar

    Wu J C, Cai M, Lu Z J, Huang N S, Feng C, Zhao Z T 2023 Acta Opt. Sin. 43 2114002Google Scholar

    [4]

    张少军, 郭智, 成加皿, 王勇, 陈家华, 刘志 2023 物理学报 72 105203Google Scholar

    Zhang S J, Guo Z, Cheng J M, Wang Y, Chen J H, Liu Z 2023 Acta Phys. Sin. 72 105203Google Scholar

    [5]

    林宏翔, 魏晓慧, 廖天发, 王文辕, 杜鹃, 杨明亮 2022 光子学报 51 1014008Google Scholar

    Lin Z X, Wei X H, Liao T F, Wang W Y, Du J, Yang M L 2022 Acta Photon. Sin. 51 1014008Google Scholar

    [6]

    Norio N, Ryukou K, Hiroshi S, Kimichika T, Yasunori T, Yosuke H, Tsukasa M, Miho S, Takanori T, Olga A T, Takashi O, Hiroshi K 2023 Jap. J. Appl. Phys. 62 SG0809Google Scholar

    [7]

    马晓喆, 张方, 黄惠杰 2021 中国激光 48 2005001Google Scholar

    Ma X Z, Zhang F, Huang H J 2021 Chin. J. Lasers 48 2005001Google Scholar

    [8]

    刘佳红, 张方, 黄惠杰 2022 激光与光电子学进展 59 0922011Google Scholar

    Liu J H, Zhang F, Huang H J 2022 Laser Optoelectron. Prog. 59 0922011Google Scholar

    [9]

    Kenneth A G, Markus P B, Antoine W, Iacopo M, Senajith B R, Arnaud P A, Michael R D, Carl W C, Chao W L, Daniel J Z, James B M, Patrick P N, Anne R 2014 SPIE 9048 90480Y

    [10]

    Han-Kwang N, Rilpho L D, Gosse C D V 2020 US Paten 20 200 152 345

    [11]

    Christopher N A, Ryan H M, Patrick P N 2011 SPIE 7969 796938

    [12]

    袁天语, 邵尚坤, 孙学鹏, 李惠泉, 华陆, 孙天希 2023 物理学报 72 034203Google Scholar

    Yuan T Y, Shao S K, Sun X P, Li H Q, Hua L, Sun T X 2023 Acta Phys. Sin. 72 034203Google Scholar

    [13]

    班尼恩 V, 巴特瑞 P, 范格尔库姆 R, 阿门特 L, 彼得 D, 德维里斯 G, 栋克尔 R, 恩格尔伦 W, 弗里基恩斯 O, 格瑞米克 L, 卡塔伦尼克 A, 鲁普斯特拉 E, 尼恩惠斯 H K, 尼基帕罗夫 A, 瑞肯斯 M, 詹森 F, 克鲁兹卡 B 2019 CN Patent 110083019

    [14]

    肖艳芬, 朱菁, 杨宝喜, 胡中华, 曾爱军, 黄惠杰 2013 中国激光 40 0216001Google Scholar

    Xiao Y F, Zhu J, Yang B X, Hu Z H, Zeng A J, Huang H J 2013 Chin. J. Lasers 40 0216001Google Scholar

    [15]

    李慧, 马钺洋, 尹皓玉, 韩晓泉, 黄宇峰, 吴晓斌 2024 激光与光电子进展 61 已录用Google Scholar

    Li H, Ma Y Y, Yin H Y, Han X Q, Huang Y F, Wu X B 2024 Laser Optoelectron. Prog. 61 in pressGoogle Scholar

    [16]

    Akram M N, Tong Z M, Ouyang G M, Chen X Y, Kartashov V 2010 Appl. Opt. 49 3297Google Scholar

    [17]

    Li D Y, Kelly D P, Sheridan J T 2013 Appl. Opt. 52 8617Google Scholar

    [18]

    Hsiao Y N, Wu H P, Chen C H, Lin Y C, Lee M K, Liu S H 2014 Opt. Rev. 21 715Google Scholar

    [19]

    Sun M J, Lu Z K 2010 Opt. Eng. 49 024202Google Scholar

    [20]

    李丽, 韩学勤, 赵士伟, 包鸿音, 王兴宾 2014 激光与光电子学进展 51 011401Google Scholar

    Li L, Han X Q, Zhao S W, Bao H Y, Wang X B 2014 Laser Optoelectron. Prog. 51 011401Google Scholar

  • 图 1  新型匀光管的结构模型

    Fig. 1.  Structural model of the newly designed light pipe.

    图 2  光线在匀光管内的传输轨迹示意图 (a) 常规圆柱型水平匀光管; (b)带有倾斜单元的匀光管

    Fig. 2.  Schematic diagram of ray transmission in the light pipe: (a) Conventional cylindrical light pipe; (b) light pipe with tilted elements.

    图 3  通过两个具有高空间相干性的高斯光源建立干涉场 (a) 示意图; (b)软件模拟仿真的光场分布

    Fig. 3.  Two Gaussian sources with high spatial coherence are used to obtain the interference field: (a) Schematic diagram; (b) optical field distribution simulated by software.

    图 4  四种不同匀光管结构 (a) 常规圆柱型匀光管(结构一); (b) 单倾斜单元匀光管(结构二); (c) 具有在一个平面内一对呈对称分布的倾斜单元的匀光管(结构三); (d) 具有在两正交平面内分别具有一对呈对称分布的倾斜单元的新型匀光管(结构四)

    Fig. 4.  Four light pipes with different structures: (a) Conventional cylindrical light pipe (first structure); (b) light pipe with single tilted element (second structure); (c) light pipe with a pair of tilted elements are symmetrically distributed in the y-z plane (third structure); (d) newly designed light pipe with a two pairs of tilted elements are symmetrically distributed in the y-z plane and x-z plane (fourth structure).

    图 5  不同L值时4种匀光管出口处相位分布 (a) 结构一; (b) 结构二; (c) 结构三; (d) 结构四, 新型匀光管

    Fig. 5.  Phase distribution at the outlet of four light pipes when different L values: (a) First structure; (b) second structure; (c) third structure; (d) newly designed light pipe (fourth structure).

    图 6  匀光管内光路传输示意图 (a) 高斯光束振幅分布特征; (b) 光线经过新型匀光管的掠入射角变化

    Fig. 6.  Schematic diagram of light transmission in the light pipe: (a) Gaussian beam amplitude distribution; (b) variation of the grazing incidence angle of ray in the newly designed light pipe.

    图 7  具有不同长度的4种匀光管在出口处的光场分布 (a)结构一; (b) 结构二; (c) 结构三; (d) 新型匀光管(结构四)

    Fig. 7.  Optical field distribution at the outlet of four light pipes with different length: (a) First structure; (b) second structure; (c) third structure; (d) newly designed light pipe (fourth structure)

    图 8  反射效率随匀光管长度的变化曲线

    Fig. 8.  Reflection efficiency curve with the different length of the light pipe.

    图 9  分别改变L, Dα时匀光管出口光场分布

    Fig. 9.  Optical field distribution at the outlet of light pipe when L, D and α are variables.

    图 10  分别改变L, Dα时匀光管的反射效率

    Fig. 10.  Reflection efficiency of light pipe when L, D and α are variables.

    表 1  模拟参数

    Table 1.  Simulation parameters.

    模拟参数 参数值 模拟参数 参数值
    光源波长/nm 13.5 光源特征 高斯光源
    光源数量/个 2 每个光源功率/W 1
    每个光源分析光线数/条 1 × 106 光源发散角 2θ/mrad 20
    匀光管总长度 L/mm 200—1000 匀光管内径 D/mm 1
    匀光管倾斜单元倾斜角度 α/mrad 10 探测器尺寸/mm 1 × 1
    探测器像素数 800 × 800
    下载: 导出CSV
  • [1]

    赵振堂, 戴志敏, 张文志, 刘波, 邓海啸, 张满洲, 田顺强 2023 复旦学报 62 293

    Zhao Z T, Dai Z M, Zhang W Z, Liu B, Deng H X, Zhang M Z, Tian S Q 2023 J. Fudan Univ. 62 293

    [2]

    杨家岳, 董文锐, 江凌, 袁开军, 王方军, 吴国荣, 乔德志, 张未卿, 杨学明 2023 中国科学: 化学 53 2103

    Yang J Y, Dong W R, Jiang L, Yuan K J, Wang F J, Wu G R, Qiao D Z, Zhang W Q, Yang X M 2023 Sci. Sin. Chim. 53 2103

    [3]

    吴嘉程, 蔡萌, 陆宇杰, 黄楠顺, 冯超, 赵振堂 2023 光学学报 43 2114002Google Scholar

    Wu J C, Cai M, Lu Z J, Huang N S, Feng C, Zhao Z T 2023 Acta Opt. Sin. 43 2114002Google Scholar

    [4]

    张少军, 郭智, 成加皿, 王勇, 陈家华, 刘志 2023 物理学报 72 105203Google Scholar

    Zhang S J, Guo Z, Cheng J M, Wang Y, Chen J H, Liu Z 2023 Acta Phys. Sin. 72 105203Google Scholar

    [5]

    林宏翔, 魏晓慧, 廖天发, 王文辕, 杜鹃, 杨明亮 2022 光子学报 51 1014008Google Scholar

    Lin Z X, Wei X H, Liao T F, Wang W Y, Du J, Yang M L 2022 Acta Photon. Sin. 51 1014008Google Scholar

    [6]

    Norio N, Ryukou K, Hiroshi S, Kimichika T, Yasunori T, Yosuke H, Tsukasa M, Miho S, Takanori T, Olga A T, Takashi O, Hiroshi K 2023 Jap. J. Appl. Phys. 62 SG0809Google Scholar

    [7]

    马晓喆, 张方, 黄惠杰 2021 中国激光 48 2005001Google Scholar

    Ma X Z, Zhang F, Huang H J 2021 Chin. J. Lasers 48 2005001Google Scholar

    [8]

    刘佳红, 张方, 黄惠杰 2022 激光与光电子学进展 59 0922011Google Scholar

    Liu J H, Zhang F, Huang H J 2022 Laser Optoelectron. Prog. 59 0922011Google Scholar

    [9]

    Kenneth A G, Markus P B, Antoine W, Iacopo M, Senajith B R, Arnaud P A, Michael R D, Carl W C, Chao W L, Daniel J Z, James B M, Patrick P N, Anne R 2014 SPIE 9048 90480Y

    [10]

    Han-Kwang N, Rilpho L D, Gosse C D V 2020 US Paten 20 200 152 345

    [11]

    Christopher N A, Ryan H M, Patrick P N 2011 SPIE 7969 796938

    [12]

    袁天语, 邵尚坤, 孙学鹏, 李惠泉, 华陆, 孙天希 2023 物理学报 72 034203Google Scholar

    Yuan T Y, Shao S K, Sun X P, Li H Q, Hua L, Sun T X 2023 Acta Phys. Sin. 72 034203Google Scholar

    [13]

    班尼恩 V, 巴特瑞 P, 范格尔库姆 R, 阿门特 L, 彼得 D, 德维里斯 G, 栋克尔 R, 恩格尔伦 W, 弗里基恩斯 O, 格瑞米克 L, 卡塔伦尼克 A, 鲁普斯特拉 E, 尼恩惠斯 H K, 尼基帕罗夫 A, 瑞肯斯 M, 詹森 F, 克鲁兹卡 B 2019 CN Patent 110083019

    [14]

    肖艳芬, 朱菁, 杨宝喜, 胡中华, 曾爱军, 黄惠杰 2013 中国激光 40 0216001Google Scholar

    Xiao Y F, Zhu J, Yang B X, Hu Z H, Zeng A J, Huang H J 2013 Chin. J. Lasers 40 0216001Google Scholar

    [15]

    李慧, 马钺洋, 尹皓玉, 韩晓泉, 黄宇峰, 吴晓斌 2024 激光与光电子进展 61 已录用Google Scholar

    Li H, Ma Y Y, Yin H Y, Han X Q, Huang Y F, Wu X B 2024 Laser Optoelectron. Prog. 61 in pressGoogle Scholar

    [16]

    Akram M N, Tong Z M, Ouyang G M, Chen X Y, Kartashov V 2010 Appl. Opt. 49 3297Google Scholar

    [17]

    Li D Y, Kelly D P, Sheridan J T 2013 Appl. Opt. 52 8617Google Scholar

    [18]

    Hsiao Y N, Wu H P, Chen C H, Lin Y C, Lee M K, Liu S H 2014 Opt. Rev. 21 715Google Scholar

    [19]

    Sun M J, Lu Z K 2010 Opt. Eng. 49 024202Google Scholar

    [20]

    李丽, 韩学勤, 赵士伟, 包鸿音, 王兴宾 2014 激光与光电子学进展 51 011401Google Scholar

    Li L, Han X Q, Zhao S W, Bao H Y, Wang X B 2014 Laser Optoelectron. Prog. 51 011401Google Scholar

  • [1] 仲银鹏, 杨霞. 基于自由电子激光的散射技术及谱学方法进展. 物理学报, 2024, 73(19): 194101. doi: 10.7498/aps.73.20240930
    [2] 杜小娇, 魏龙, 孙羽, 胡水明. 自由电子激光制备高强度亚稳态氦原子和类氦离子. 物理学报, 2024, 73(15): 150201. doi: 10.7498/aps.73.20240554
    [3] 高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民. 局域热平衡Sn等离子体极紫外辐射不透明度和发射谱的理论研究. 物理学报, 2023, 72(18): 183101. doi: 10.7498/aps.72.20230455
    [4] 司明奇, 温智琳, 张齐进, 窦银萍, 李博超, 宋晓伟, 谢卓, 林景全. 低密度SnO2靶激光等离子体极紫外光及离带热辐射. 物理学报, 2023, 72(6): 065201. doi: 10.7498/aps.72.20222385
    [5] 王明军, 王婉柔, 李勇俊. 利用平面声场对非均匀大气介质光波传输相位的调控. 物理学报, 2022, 71(16): 164302. doi: 10.7498/aps.71.20220484
    [6] 谢卓, 温智琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射. 物理学报, 2022, 71(3): 035202. doi: 10.7498/aps.71.20211450
    [7] 谢卓, 温志琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211450
    [8] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置. 物理学报, 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [9] 郭晶, 郭福明, 陈基根, 杨玉军. 高频激光脉宽对原子光电子发射谱的影响. 物理学报, 2018, 67(7): 073202. doi: 10.7498/aps.67.20172440
    [10] 宋文娟, 郭福明, 陈基根, 杨玉军. 双色高频激光作用下原子低阶次谐波的理论研究. 物理学报, 2018, 67(3): 033201. doi: 10.7498/aps.67.20172129
    [11] 黎明, 杨兴繁, 许州, 束小建, 鲁向阳, 黄文会, 王汉斌, 窦玉焕, 沈旭明, 单李军, 邓德荣, 徐勇, 柏伟, 冯第超, 吴岱, 肖德鑫, 王建新, 罗星, 周奎, 劳成龙, 闫陇刚, 林司芬, 张鹏, 张浩, 和天慧, 潘清, 李相坤, 李鹏, 刘宇, 杨林德, 刘婕, 张德敏, 李凯, 陈亚男. 太赫兹自由电子激光的受激饱和实验. 物理学报, 2018, 67(8): 084102. doi: 10.7498/aps.67.20172413
    [12] 窦银萍, 谢卓, 宋晓林, 田勇, 林景全. Gd靶激光等离子体6.7nm光源的实验研究. 物理学报, 2015, 64(23): 235202. doi: 10.7498/aps.64.235202
    [13] 陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵. 脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究. 物理学报, 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [14] 施展, 陈来柱, 佟永帅, 郑智滨, 杨水源, 王翠萍, 刘兴军. Terfenol-D/PZT磁电复合材料的磁电相位移动研究. 物理学报, 2013, 62(1): 017501. doi: 10.7498/aps.62.017501
    [15] 程杨, 姚佰承, 吴宇, 王泽高, 龚元, 饶云江. 基于倏逝场耦合的石墨烯波导光传输相位特性仿真与实验研究. 物理学报, 2013, 62(23): 237805. doi: 10.7498/aps.62.237805
    [16] 陈小艺, 刘曼, 李海霞, 张美娜, 宋洪胜, 滕树云, 程传福. 弱散射体产生的菲涅耳极深区散斑场相位涡旋演化的实验研究. 物理学报, 2012, 61(7): 074201. doi: 10.7498/aps.61.074201
    [17] 颜森林. 注入半导体激光器混沌调制性能与内部相位键控编码方法研究. 物理学报, 2006, 55(12): 6267-6274. doi: 10.7498/aps.55.6267
    [18] 颜森林. 光纤混沌相位编码保密通信系统理论研究. 物理学报, 2005, 54(5): 2000-2006. doi: 10.7498/aps.54.2000
    [19] 曹觉能, 郭 旗. 不同非局域程度条件下空间光孤子的传输特性. 物理学报, 2005, 54(8): 3688-3693. doi: 10.7498/aps.54.3688
    [20] 黄 敏, 赵晓鹏, 王宝祥, 尹剑波, 曹昌年. 电流变液微波反射可调控性. 物理学报, 2004, 53(6): 1895-1899. doi: 10.7498/aps.53.1895
计量
  • 文章访问数:  1896
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-07
  • 修回日期:  2024-03-29
  • 上网日期:  2024-04-07
  • 刊出日期:  2024-06-05

/

返回文章
返回