搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低密度SnO2靶激光等离子体极紫外光及离带热辐射

司明奇 温智琳 张齐进 窦银萍 李博超 宋晓伟 谢卓 林景全

引用本文:
Citation:

低密度SnO2靶激光等离子体极紫外光及离带热辐射

司明奇, 温智琳, 张齐进, 窦银萍, 李博超, 宋晓伟, 谢卓, 林景全

Radiation of extreme ultraviolet source and out-of-band from laser-irradiated low-density SnO2 target

Si Ming-Qi, Wen Zhi-Lin, Zhang Qi-Jin, Dou Yin-Ping, Li Bo-Chao, Song Xiao-Wei, Xie Zhuo, Lin Jing-Quan
PDF
HTML
导出引用
  • 极紫外光刻技术是我国当前面临35项“卡脖子”关键核心技术之首. 高极紫外光转换效率和低离带热辐射的激光等离子体极紫外光源是极紫外光刻系统的重要组成部分. 本文通过采用激光作用固体Sn和低密度SnO2靶对极紫外光源以及其离带热辐射进行研究. 实验结果表明, 两种形式Sn靶在波长为13.5 nm附近产生了强的极紫外光辐射. 由于固体Sn靶等离子体具有较强自吸收效应, 在光刻机中心工作波长13.5 nm处的辐射强度处于非光谱峰值位置. 而低密度SnO2靶具有较弱的自吸收效应, 其所辐射光谱的峰值恰好位于13.5 nm处. 相比于固体Sn靶, 低密度SnO2靶中处于激发态的Sn离子发生跃迁所产生的伴线减弱, 使其在13.5 nm处的光谱效率提升了约20%. 另一方面, 开展了极紫外光源离带热辐射(400—700 nm)的实验研究, 光谱测量结果表明离带热辐射主要是由连续谱所主导, 低密度SnO2靶中含有部分低Z元素O(Z = 8), 导致其所形成的连续谱强度低, 同时离带辐射时间短, 因而激光作用低密度SnO2靶所产生的离带热辐射弱于固体Sn靶情况. 离带热辐射角分布测量结果表明, 随着与靶材法线夹角逐渐增加, 离带热辐射强度逐渐减弱, 且辐射强度与角度满足$ A{\cos ^\alpha }\theta $ 的关系.
    The extreme ultraviolet (EUV) lithography technology required for high-end chip manufacturing is the first of 35 “bottleneck” key technologies that China is facing currently. The high conversion efficiency EUV source and low out-of-band radiation play a significant role in the application of the EUV lithography system. In this work, the EUV source and out-of-band radiation are studied by using laser irradiated solid Sn target and low-density SnO2 target. The result shows that a strong EUV radiation at a wavelength of 13.5 nm is generated when the laser irradiates the two forms of Sn targets. Owing to the self-absorption effect of the solid Sn target plasma, the maximum intensity of the wavelength is not located at the position of 13.5 nm, which is working wavelength of EUV lithography system. However, the peak radiation spectrum is located at the position of 13.5 nm with low-density SnO2 target due to its weaker plasma self-absorption effect. In addition, the satellite lines are weaker in low-density SnO2 target than in the solid Sn target, so that the spectrum efficiency of the EUV at 13.5 nm (2% bandwidth) is increased by about 20%. On the other hand, the experimental study of the out-of-band radiation is carried out. The out-of-band radiation spectral results show that the out-of-band radiation is mainly dominated by the continuum spectrum. Compared with the solid Sn target, the low-density SnO2 target contains a part of the low Z element O (Z = 8), resulting in a low-intensity continuum spectrum. In addition, the collision probability of ion-ion and electron-ion both become low when the laser irradiates the low-density SnO2 target, resulting in a short out-of-band radiation duration time. Therefore, the out-of-band radiation generated by the laser irradiated on the low-density SnO2 target is weak based on the above reasons. The angular distribution of out-of-band radiation measurement results shows that the intensity of out-of-band radiation decreases with the angle increasing. A cosine function $A \cos ^\alpha \theta$ can fit the angular distribution of the total radiation.
      通信作者: 谢卓, zxie@cust.edu.cn ; 林景全, linjingquan@cust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U22A2070, 62005021, 62105040, 62175018)、重庆市自然科学基金(批准号: cstc2021jcyj-msxmX0735)、吉林省科技厅项目(批准号: YDZJ202201ZYTS301, YDZJ202102CXJD028, 20210402072GH)和吉林省教育厅(批准号: JJKH20220721KJ)资助的课题.
      Corresponding author: Xie Zhuo, zxie@cust.edu.cn ; Lin Jing-Quan, linjingquan@cust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U22A2070, 62005021, 62105040, 62175018), the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxmX0735), the Science and Technology Department of Jilin Province, China (Grant Nos. YDZJ202201ZYTS301, YDZJ202102CXJD028, 20210402072GH), and the Educational Department of Jilin Province, China (Grant No. JJKH20220721KJ).
    [1]

    Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Commun. 11 2334Google Scholar

    [2]

    Huang Q, Medvedev V, van de Kruijs R, Yakshin A, Louis E, Bijkerk F 2017 Appl. Phys. Lett. 4 011104Google Scholar

    [3]

    van de Kerkhof M, Liu F, Meeuwissen M, Zhang X Q, de Kruif R, Davydova N, Schiffelers G, Wählisch F, van Setten E, Varenkamp W, Ricken K, de Winter L, Mcnamara J, Bayraktar M 2020 Journal of Micro/Nanolithography, MEMS, and MOEMS San Jose, California, United States, September 22, 2020 p033801

    [4]

    Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar

    [5]

    Behnke L, Schupp R, Bouza Z, Bayraktar M, Mazzotta Z, Meijer R, Sheil J, Witte S, Ubachs W, Hoekstra R, Versolato O O 2021 Opt. Express 29 4475Google Scholar

    [6]

    Freeman J R, Harilal S S, Verhoff B, Hassanein A, Rice B 2012 Plasma Sources Sci. T. 21 055003Google Scholar

    [7]

    Harilal S S, Coons R W, Hough P, Hassanein A 2009 Appl. Phys. Lett. 95 221501Google Scholar

    [8]

    Higashiguchi T, Rajyaguru C, Kubodera S, Sasaki W, Yugami N, Kikuchi T, Kavata S, Andreev A 2005 Appl. Phys. Lett. 86 231502Google Scholar

    [9]

    Higashiguchi T, Kawasaki K, Sasaki W, Kubodera S 2006 Appl. Phys. Lett. 88 161502Google Scholar

    [10]

    谢卓, 温智琳, 司明奇, 窦银萍, 宋晓伟, 林景全 2022 物理学报 71 035202Google Scholar

    Xie Z, Wen Z L, Si M Q, Dou Y P, Song X W, Lin J Q 2022 Acta. Phys. Sin. 71 035202Google Scholar

    [11]

    李镇广, 窦银萍, 谢卓, 王海建, 宋晓伟, 林景全 2021 中国激光 48 1601005Google Scholar

    Li Z G, Dou Y P, Xie Z, Wang H J, Song X W, Lin J Q 2021 Chin. J. Lasers. 48 1601005Google Scholar

    [12]

    Okuno T, Fujiokaa S, Nishimura H, Tao Y, Nagai K, Gu Q, Ued N a, Ando T, Nishihara K, Norimatsu T, Miyanaga N, Izawa Y, Mima K 2006 Appl. Phys. Lett. 88 161501Google Scholar

    [13]

    Harilal S S, Tillack M S, Tao Y, O'Shay B, Paguio R, Nikroo A. 2006 Opt. Lett. 31 1549Google Scholar

    [14]

    O'Sullivan, G D, Faulkner R 1994 Opt. Eng. 33 3978Google Scholar

    [15]

    Fujioka S, Nishimura H, Okuno T, Tao Y, Ueda N, Ando T, Kurayama H, Yasuda Y, Uchida S, Shimada Y, Yamaura M, Gu Q, Nagai K, Norimatsu T, Furukawa H, Sunahara A, Kang Y G, Murakami M, Nishihara K, Miyanaga N, Izawa Y 2005 Emerging Lithographic Technologies IX San Jose, California, United States, May 6, 2005 p578

    [16]

    Torretti F, Schupp R, Kurilovich D, Bayerle A, Scheers J, Ubachs W, Hoekstra R, Versolato O O 2018 J. Phys. B: At., Mol. Opt. Phys. 51 045005Google Scholar

    [17]

    Stuik R, Scholze F, Tümmler J, Bijkerk F 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 492 305Google Scholar

    [18]

    Louis E, van de Kruijs R W E, Yakshin A E, Alonso van der Westen S, Bijkerk F, van Herpen M M J W, Klunder D J W, Bakker L, Enkisch H, Müllender S, Richter M, Banine V 2006 In Emerging Lithographic Technologies X San Jose, California, United States, March 24, 2006 p887

    [19]

    Parchamy H, Szilagyi J, Masnavi M, Richardson M 2017 J. Appl. Phys. 122 173303Google Scholar

    [20]

    Namba S, Fujioka S, Sakaguchi H, Nishimura H, Yasuda Y, Nagai K, Miyanaga N, Izawa Y, Mima K, Sato K, Takiyama K 2008 J. Appl. Phys. 104 013305Google Scholar

    [21]

    Sakaguchi H, Fujioka S, Namba S, Tanuma H, Ohashi H, Suda S, Shimomura M, Nakai Y, Kimura Y, Yasuda Y, Nishimura H, Norimatsu T, Sunahara A, Nishihara K, Miyanaga N, Izawa Y, Mima K 2008 Appl. Phys. Lett. 92 111503Google Scholar

    [22]

    Mbanaso C, Antohe A O, Bull H, Denbeaux G, Goodwin F, Hershcovitch A 2012 J. Micro/Nanolithgr. MEMS. MOEMS. 11 021116Google Scholar

    [23]

    宋晓林, 宋晓伟, 窦银萍, 田勇, 谢卓, 高勋, 林景全 2016 光谱学与光谱分析 36 3114Google Scholar

    Song X L, Song X W, Dou Y P, Tian Y, Xie Z, Gao X, Lin J Q 2016 Spectrosc. Spect. Anal. 36 3114Google Scholar

    [24]

    Morris O, Hayden P, O’Reilly F, Murphy N, Dunne P, Bakshi V 2007 Appl. Phys. Lett. 91 081506Google Scholar

    [25]

    Tomie T 2012 J. Micro-nanolith. Mem. 11 021109Google Scholar

    [26]

    O'Sullivan G 1983 J. Phys. B At. Mol. Phys. 16 3291Google Scholar

    [27]

    Cummings A, O'Sullivan G, Dunne P, Sokell E, Murphy N, White, Hayden J P, Sheridan P, Lysaght M, O'Reilly F 2006 J. Phys. D: Appl. Phys. 39 73Google Scholar

  • 图 1  激光等离子体极紫外光源与其离带热辐射实验装置图

    Fig. 1.  Experimental setup for the radiation of extreme ultraviolet (EUV) source and out-of-band from plasma produced by a laser.

    图 2  不同激光能量下的极紫外光谱曲线图 (a)固体Sn靶; (b)低密度SnO2

    Fig. 2.  The EUV spectra under different laser energy: (a) Solid Sn target; (b) low-density SnO2 target.

    图 3  激光能量为400 mJ时, 固体Sn靶和低密度SnO2靶激光等离子体极紫外光谱对比图

    Fig. 3.  Comparison of EUV spectra of laser produced Sn and SnO2 plasma at laser energy of 400 mJ.

    图 4  激光能量在200—600 mJ范围内, 固体Sn靶与低密度SnO2靶激光等离子体极紫外光谱效率对比图

    Fig. 4.  Spectral efficiency of the radiation around 13.5 nm (2% bandwidth) to the total radiation between 10–18 nm under laser produced Sn and SnO2 plasma with laser energy from 200–600 mJ.

    图 5  激光能量为400 mJ作用下, 两种靶材等离子体光源离带热辐射对比图

    Fig. 5.  Comparison of out-of-band radiation of laser produced Sn and SnO2 plasma at laser energy of 400 mJ.

    图 6  激光能量为400 mJ、探测角度为30°时所测量的时间分辨离带热辐射 (a)带通滤波片波长325—385 nm; (b)带通滤波片波长435—500 nm; (c)带通滤波片波长485—565 nm

    Fig. 6.  Out-of-band radiation of laser produced Sn and SnO2 plasma was measured at the detection angle of 30° when laser energy of 400 mJ: (a) Band pass filter wavelength of 325–385 nm; (b) band pass filter wavelength of 435–500 nm; (c) band pass filter wavelength of 485–565 nm.

    图 7  激光能量为400 mJ, 两种靶材所产生离带热辐射强度的角分布 (a)带通滤波片波长325—385 nm; (b)带通滤波片波长435—500 nm; (c)带通滤波片波长485—565 nm

    Fig. 7.  Angle distribution of out-of-band radiation of laser produced Sn and SnO2 plasma at laser energy of 400 mJ: (a) Band pass filter wavelength of 325–385 nm; (b) band pass filter wavelength of 435–500 nm; (c) band pass filter wavelength of 485–565 nm.

  • [1]

    Torretti F, Sheil J, Schupp R, Basko M M, Bayraktar M, Meijer R A, Witte S, Ubachs W, Hoekstra R, Versolato O O, Neukirch A J, Colgan J 2020 Nat. Commun. 11 2334Google Scholar

    [2]

    Huang Q, Medvedev V, van de Kruijs R, Yakshin A, Louis E, Bijkerk F 2017 Appl. Phys. Lett. 4 011104Google Scholar

    [3]

    van de Kerkhof M, Liu F, Meeuwissen M, Zhang X Q, de Kruif R, Davydova N, Schiffelers G, Wählisch F, van Setten E, Varenkamp W, Ricken K, de Winter L, Mcnamara J, Bayraktar M 2020 Journal of Micro/Nanolithography, MEMS, and MOEMS San Jose, California, United States, September 22, 2020 p033801

    [4]

    Fujioka S, Nishimura H, Nishihara K, Sasaki A, Sunahara A, Okuno T, Ueda N, Ando T, Tao Y, Shimada Y, Hashimoto K, Yamaura M, Shigemori K, Nakai M, Nagai K, Norimatsu T, Nishikawa T, Miyanaga N, Izawa Y, Mima K 2005 Phys. Rev. Lett. 95 235004Google Scholar

    [5]

    Behnke L, Schupp R, Bouza Z, Bayraktar M, Mazzotta Z, Meijer R, Sheil J, Witte S, Ubachs W, Hoekstra R, Versolato O O 2021 Opt. Express 29 4475Google Scholar

    [6]

    Freeman J R, Harilal S S, Verhoff B, Hassanein A, Rice B 2012 Plasma Sources Sci. T. 21 055003Google Scholar

    [7]

    Harilal S S, Coons R W, Hough P, Hassanein A 2009 Appl. Phys. Lett. 95 221501Google Scholar

    [8]

    Higashiguchi T, Rajyaguru C, Kubodera S, Sasaki W, Yugami N, Kikuchi T, Kavata S, Andreev A 2005 Appl. Phys. Lett. 86 231502Google Scholar

    [9]

    Higashiguchi T, Kawasaki K, Sasaki W, Kubodera S 2006 Appl. Phys. Lett. 88 161502Google Scholar

    [10]

    谢卓, 温智琳, 司明奇, 窦银萍, 宋晓伟, 林景全 2022 物理学报 71 035202Google Scholar

    Xie Z, Wen Z L, Si M Q, Dou Y P, Song X W, Lin J Q 2022 Acta. Phys. Sin. 71 035202Google Scholar

    [11]

    李镇广, 窦银萍, 谢卓, 王海建, 宋晓伟, 林景全 2021 中国激光 48 1601005Google Scholar

    Li Z G, Dou Y P, Xie Z, Wang H J, Song X W, Lin J Q 2021 Chin. J. Lasers. 48 1601005Google Scholar

    [12]

    Okuno T, Fujiokaa S, Nishimura H, Tao Y, Nagai K, Gu Q, Ued N a, Ando T, Nishihara K, Norimatsu T, Miyanaga N, Izawa Y, Mima K 2006 Appl. Phys. Lett. 88 161501Google Scholar

    [13]

    Harilal S S, Tillack M S, Tao Y, O'Shay B, Paguio R, Nikroo A. 2006 Opt. Lett. 31 1549Google Scholar

    [14]

    O'Sullivan, G D, Faulkner R 1994 Opt. Eng. 33 3978Google Scholar

    [15]

    Fujioka S, Nishimura H, Okuno T, Tao Y, Ueda N, Ando T, Kurayama H, Yasuda Y, Uchida S, Shimada Y, Yamaura M, Gu Q, Nagai K, Norimatsu T, Furukawa H, Sunahara A, Kang Y G, Murakami M, Nishihara K, Miyanaga N, Izawa Y 2005 Emerging Lithographic Technologies IX San Jose, California, United States, May 6, 2005 p578

    [16]

    Torretti F, Schupp R, Kurilovich D, Bayerle A, Scheers J, Ubachs W, Hoekstra R, Versolato O O 2018 J. Phys. B: At., Mol. Opt. Phys. 51 045005Google Scholar

    [17]

    Stuik R, Scholze F, Tümmler J, Bijkerk F 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 492 305Google Scholar

    [18]

    Louis E, van de Kruijs R W E, Yakshin A E, Alonso van der Westen S, Bijkerk F, van Herpen M M J W, Klunder D J W, Bakker L, Enkisch H, Müllender S, Richter M, Banine V 2006 In Emerging Lithographic Technologies X San Jose, California, United States, March 24, 2006 p887

    [19]

    Parchamy H, Szilagyi J, Masnavi M, Richardson M 2017 J. Appl. Phys. 122 173303Google Scholar

    [20]

    Namba S, Fujioka S, Sakaguchi H, Nishimura H, Yasuda Y, Nagai K, Miyanaga N, Izawa Y, Mima K, Sato K, Takiyama K 2008 J. Appl. Phys. 104 013305Google Scholar

    [21]

    Sakaguchi H, Fujioka S, Namba S, Tanuma H, Ohashi H, Suda S, Shimomura M, Nakai Y, Kimura Y, Yasuda Y, Nishimura H, Norimatsu T, Sunahara A, Nishihara K, Miyanaga N, Izawa Y, Mima K 2008 Appl. Phys. Lett. 92 111503Google Scholar

    [22]

    Mbanaso C, Antohe A O, Bull H, Denbeaux G, Goodwin F, Hershcovitch A 2012 J. Micro/Nanolithgr. MEMS. MOEMS. 11 021116Google Scholar

    [23]

    宋晓林, 宋晓伟, 窦银萍, 田勇, 谢卓, 高勋, 林景全 2016 光谱学与光谱分析 36 3114Google Scholar

    Song X L, Song X W, Dou Y P, Tian Y, Xie Z, Gao X, Lin J Q 2016 Spectrosc. Spect. Anal. 36 3114Google Scholar

    [24]

    Morris O, Hayden P, O’Reilly F, Murphy N, Dunne P, Bakshi V 2007 Appl. Phys. Lett. 91 081506Google Scholar

    [25]

    Tomie T 2012 J. Micro-nanolith. Mem. 11 021109Google Scholar

    [26]

    O'Sullivan G 1983 J. Phys. B At. Mol. Phys. 16 3291Google Scholar

    [27]

    Cummings A, O'Sullivan G, Dunne P, Sokell E, Murphy N, White, Hayden J P, Sheridan P, Lysaght M, O'Reilly F 2006 J. Phys. D: Appl. Phys. 39 73Google Scholar

  • [1] 骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉. 极紫外光源及高荷态离子诱导下甲烷的脱氢通道碎裂机制. 物理学报, 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [2] 李慧, 谭芳蕊, 尹皓玉, 马钺洋, 吴晓斌. 基于匀光管的极紫外消相干和光强均匀化仿真研究. 物理学报, 2024, 73(11): 114201. doi: 10.7498/aps.73.20240335
    [3] 高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民. 局域热平衡Sn等离子体极紫外辐射不透明度和发射谱的理论研究. 物理学报, 2023, 72(18): 183101. doi: 10.7498/aps.72.20230455
    [4] 雷建廷, 余璇, 史国强, 闫顺成, 孙少华, 王全军, 丁宝卫, 马新文, 张少锋, 丁晶洁. 基于极紫外光的Ne, Xe原子电离. 物理学报, 2022, 71(14): 143201. doi: 10.7498/aps.71.20220341
    [5] 张文敏, 张凌, 程云鑫, 王正汹, 胡爱兰, 段艳敏, 周天富, 刘海庆. EAST等离子体Mo V-Mo XVIII极紫外光谱的识别. 物理学报, 2022, 71(11): 115203. doi: 10.7498/aps.71.20212383
    [6] 谢卓, 温智琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射. 物理学报, 2022, 71(3): 035202. doi: 10.7498/aps.71.20211450
    [7] 谢卓, 温志琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211450
    [8] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置. 物理学报, 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [9] 唐蓉, 王国利, 李小勇, 周效信. 红外激光场中共振结构原子对极紫外光脉冲的压缩效应. 物理学报, 2016, 65(10): 103202. doi: 10.7498/aps.65.103202
    [10] 窦银萍, 谢卓, 宋晓林, 田勇, 林景全. Gd靶激光等离子体6.7nm光源的实验研究. 物理学报, 2015, 64(23): 235202. doi: 10.7498/aps.64.235202
    [11] 陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵. 脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究. 物理学报, 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [12] 赵永蓬, 徐强, 肖德龙, 丁宁, 谢耀, 李琦, 王骐. Xe介质极紫外光源时间特性及最佳条件研究. 物理学报, 2013, 62(24): 245204. doi: 10.7498/aps.62.245204
    [13] 蔡 懿, 王文涛, 杨 明, 刘建胜, 陆培祥, 李儒新, 徐至展. 基于强激光辐照固体锡靶产生极紫外光源的实验研究. 物理学报, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [14] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究. 物理学报, 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [15] 孟春霞, 黄世华, 由芳田, 常建军, 彭洪尚, 陶 冶, 张国斌. YAG:Pr3+的真空紫外光谱分析及其4f5d能级的研究. 物理学报, 2005, 54(11): 5468-5473. doi: 10.7498/aps.54.5468
    [16] 江少恩, 孙可煦, 郑志坚, 丁永坤, 杨家敏, 缪文勇, 崔延莉, 陈久森, 于燕宁. 神光Ⅱ装置x射线辐射在低密度CH泡沫中的超声速传播实验研究. 物理学报, 2004, 53(10): 3413-3418. doi: 10.7498/aps.53.3413
    [17] 黄文忠, 何绍堂, 孔令华, 韩红军, 方泉玉, 陈国兴. 锗等离子体远紫外光谱研究. 物理学报, 1994, 43(7): 1066-1071. doi: 10.7498/aps.43.1066
    [18] 王文书, 李赞良, 黄矛. CT-6B托卡马克等离子体的真空紫外光谱. 物理学报, 1987, 36(6): 712-716. doi: 10.7498/aps.36.712
    [19] 王永昌, E. JANNITTI, G. TONDELLO. 对等离子体中谱线的斯塔克增宽的真空紫外光谱观测. 物理学报, 1985, 34(8): 1049-1055. doi: 10.7498/aps.34.1049
    [20] 江德仪, 沈立康, 赵理曾, 王文书. 真空紫外区Ar的高次离化光谱的研究. 物理学报, 1984, 33(4): 508-514. doi: 10.7498/aps.33.508
计量
  • 文章访问数:  2974
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-14
  • 修回日期:  2023-01-07
  • 上网日期:  2023-01-12
  • 刊出日期:  2023-03-20

/

返回文章
返回