-
基于少电子原子体系的精密光谱测量为 “质子半径之谜”、量子电动力学高精度检验等重大科学问题的解决带来曙光, 因此备受关注. 然而, 少电子体系许多重要的跃迁谱线位于真空/极紫外波段, 缺少合适的 窄线宽光源是阻碍其测量精度进一步提升的主要原因之一. 近年来, 基于稀有气体高次谐波过程产生的极紫外窄线宽相干光源为精密测量这些跃迁谱线带来了新的机遇. 最新研究表明, 极紫外光梳的最短波长可至12 nm, 最高功率可至mW量级, 线宽可至0.3 MHz; 而极紫外波段的拉姆齐光梳亦可以实现kHz量级的光谱精度, 且其工作波长有潜力覆盖整个极紫外波段. 本文重点介绍少电子原子极紫外波段精密光谱测量相关技术方法与研究进展. 首先简要介绍基于少电子原子体系精密光谱测量的科学意义; 随后介绍极紫外波段少电子原子体系精密光谱测量方法, 即基于极紫外光梳的直接频率梳光谱方法和极紫外波段的拉姆齐频率梳光谱方法; 然后介绍利用这些方法开展少电子原子体系精密光谱实验测量以及相关精密谱理论计算方面的研究进展, 以及这些方法在其他相关研究中面临的重要机遇; 最后给出未来工作展望.
Precision spectroscopic measurements on the few-electron atomic systems have attracted much attention because they shed light on important topics such as the “proton radius puzzle” and testing quantum electrodynamics (QED). However, many important transitions of few-electron atomic systems are located in the vacuum/extreme ultraviolet region. Lack of a suitable narrow linewidth light source is one of the main reasons that hinder the further improvement of the spectral resolution. Recently, narrow linewidth extreme ultraviolet (XUV) light sources based on high harmonic processes in rare gases have opened up new opportunities for precision measurements of these transitions. The recently implemented XUV comb has a shortest wavelength of about 12 nm, a maximum power of milliwatts, and a linewidth of about 0.3 MHz, making it an ideal tool for precision measurements in the XUV band. At the same time, the Ramsey comb in the XUV band can achieve a spectral resolution of the kHz range, and may operate throughout the entire XUV band. With these useful tools, direct frequency spectroscopy and Ramsey comb spectroscopy in the XUV region are developed, and precision spectroscopic measurements of few-electron atomic systems with these methods are becoming a hot topic in cutting-edge science. In this paper, we provide an overview of the current status and the progress of relevant researches, both experimentally and theoretically, and discuss the opportunities for relevant important transitions in the extreme ultraviolet band. -
Keywords:
- few-electron systems /
- precision spectroscopic measurements /
- extreme ultraviolet comb /
- Ramsey comb /
- quantum electrodynamics (QED)
[1] Hänsch T W, Shaolow A L, Series G W 1979 Sc. Am. 240 94Google Scholar
[2] Hänsch T W, Alnis J, Fendel P, Fischer M, Gohle C, Herrmann M, Holzwarth R, Kolachevsky N, Udem T, Zimmermann M 2005 Philos. Trans. R. Soc. London, Ser. A 363 2155Google Scholar
[3] Gao H, Vanderhaeghen M 2022 Rev. Mod. Phys. 94 015002Google Scholar
[4] Rooij R van, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333 196Google Scholar
[5] Sun Y R, Hu S M 2020 Natl. Sci. Rev. 7 1818Google Scholar
[6] Jentschura U D, Hass M 2004 Can. J. Phys. 82 103
[7] Rengelink R J, Werf Y, Notermans R, Jannin R, Eikema K S E, Hoogerland M D Vassen W 2018 Nat. Phys. 14 1132Google Scholar
[8] Qi X Q, Zhang P P, Yan Z C, Drake G W, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar
[9] Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W, Zhong Z X 2023 Phys. Rev. Lett. 131 103002Google Scholar
[10] Cozijn F, Diouf M, Ubachs W 2023 Phys. Rev. Lett. 131 073001Google Scholar
[11] Schiller S 2022 Contemporary Phys. 63 247Google Scholar
[12] Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 Science 358 79Google Scholar
[13] Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar
[14] Indelicato P 2019 J. Phys. B 52 232001Google Scholar
[15] Karshenboim S G 2005 Phys. Rep. 422 1Google Scholar
[16] Hänsch T 2006 Rev. Mod. Phys. 78 1297Google Scholar
[17] Parthey C, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, and Hänsch T 2011 Phys. Rev. Lett. 107 203001Google Scholar
[18] Grinin A, Matveev A, Yost D C, Maisenbacher L, Wirthl V, Pohl R, Hänsch T W, Udem T 2020 Science 370 1061Google Scholar
[19] Bergeson S D, Balakrishnan A, Baldwin K G, Lucatorto T B, Marangos J P, McIlrath T J, O'Brian T R, Rolston S L, Sansonetti C J, Wen J, Westbrook N, Cheng C H, Eyler E E 1998 Phys. Rev. Lett. 80 3475Google Scholar
[20] Semczuk M 2009 M. S. Thesis (Warsaw: University of Warsaw
[21] Gohle C, Udem T, Herrmann M, Rauschenberger J, Holzwarth R, Schuessler H A, Krausz F, Hänsch T W 2005 Nature 436 234Google Scholar
[22] Jones R J, Moll K D, Thorpe M J, Ye J 2005 Phys. Rev. Lett. 94 193201Google Scholar
[23] Morgenweg J, Barmes I, Eikema K S 2014 Nat. Phys. 10 30Google Scholar
[24] Pupeza I, Holzberger S, Eidam T, Carstens H, Esser D, Weitenberg J, Rußbüldt P, Rauschenberger J, Limpert J, Udem T, Tünnermann A, Hänsch T W, Apolonski A, Krausz F, Fill E 2013 Nat. Photonics 7 608Google Scholar
[25] Porat G, Heyl C M, Schoun S B, Benko C, Dörre N, Corwin K L, Ye J 2018 Nat. Photonics 12 387Google Scholar
[26] Zhang C, Ooi T, Higgins J S, Doyle J F, von der Wense L, Beeks K, Leitner A, Kazakov G, Li P, Thirolf P G, Schumm T, Ye J 2024 Nature 633 63Google Scholar
[27] Dreissen L S, Roth C, Gründeman E L, Krauth J J, Favier M G, Eikema K S 2020 Phys. Rev. A 101 052509Google Scholar
[28] Altmann R, Galtier S, Dreissen L, Eikema K 2016 Phys. Rev. Lett. 117 173201Google Scholar
[29] Haas M, Jentschura U, Keitel C, Kolachevsky N, Herrmann M, Fendel P, Fischer M, Udem T, Holzwarth R, Hänsch T, Scully M, Agarwal G 2006 Phys. Rev. A 73 052501Google Scholar
[30] Herrmann M, Haas M, Jentschura U D, Kottmann F, Leibfried D, Saathoff G, Gohle C, Ozawa A, Batteiger V, Knünz S, Kolachevsky N, Schüssler H, Hänsch T, Udem T 2009 Phys. Rev. A 79 052505Google Scholar
[31] Moreno J, Schmid F, Weitenberg J, Karshenboim S G, Hänsch T W, Udem T, Ozawa A 2023 Eur. Phys. J. D 77 67Google Scholar
[32] Krauth J J, Dreissen L S, Roth C, Gründeman E L, Collombon M, Favier M, Eikema K S 2019 arXiv: 1910.13192
[33] Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H, Gao K L 2015 Chin. Phys. Lett. 32 083701Google Scholar
[34] Eyler1 E, Chieda1 D, Stowe M, Thorpe M, Schibli T, Ye J 2008 Eur. Phys. J. D 48 43Google Scholar
[35] Kandula D Z, Gohle C, Pinkert T J, Ubachs W, Eikema K S 2010 Phys. Rev. Lett. 105 063001Google Scholar
[36] Scheidegger S , Merkt F 2024 Phys. Rev. Lett. 132 113001Google Scholar
[37] Zhang J, Hua L Q, Yu S G, Chen Z, Liu X J 2019 Chin. Phys. B 28 044206
[38] Zhang J, Hua L Q, Chen Z, Zhu M, Gong C, Liu X J, 2020 Chin. Phys. Lett. 37 124203
[39] Holzwarth R, Nevsky A Y, Zimmermann M, Udem T, Hänsch T W, Von Zanthier J, Walther H, Knight J C, Wadsworth W J, Russell P S, Skvortsov M N, Bagayev N 2001 Appl. Phys. B 73 269Google Scholar
[40] Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68Google Scholar
[41] Ozawa A, Kobayashi Y 2013 Phys. Rev. A 87 022507Google Scholar
[42] Zhu M F, Xiao Z R, Zhang H Z, Hua L Q, Liu Y N, Zuo Z, Xu S P, Liu X J 2024 Opt. Lett. 49 3757Google Scholar
[43] Cavalieri S, Materazzi M, Eramo R 2002 Opt. Lasers Eng. 37 577Google Scholar
[44] Witte S, Zinkstok R T, Ubachs W, Hogervorst W, Eikema K S 2005 Science 307 400Google Scholar
[45] Ramsey N F 1949 Phys. Rev. 76 996Google Scholar
[46] Pohl R, Antognini1A, Nez F, Amaro F, Biraben F, Cardoso J, Covita D, Dax A, Dhawan S, Fernandes L, Giesen A, Graf T, Hansch T, Indelicato P, Julien L, Kao C, Knowles P, Bigot E, Liu Y, Lopes J, Ludhova L, Monteiro C, Mulhauser F, Nebel T, Rabinowitz P, Santos J, Schaller L, Schuhmann K, Schwob C, Taqqul1 D, Veloso J, Kottmann F 2010 Nature 466 213Google Scholar
[47] Brandt A D, Cooper S F, Rasor C, Burkley Z, Matveev A, Yost D 2022 Phys. Rev. Lett. 128 023001Google Scholar
[48] Karshenboim S G., Ivanov V G 2002 Eur. Phys. J. D 19 13Google Scholar
[49] Karshenboim S G., Ivanov V G 2002 Phys. Lett. B 524 259Google Scholar
[50] Jentschura U D, Matveev A, Parthey C G, Alnis J, Pohl R, Udem Th, Kolachevsky N, Hänsch T W 2011 Phys. Rev. A 83 042505Google Scholar
[51] Yerokhin V A, Pachucki K, Patkóš V 2019 Ann. Phys. 531 1800324Google Scholar
[52] Drake G W F 2023 Springer Handbook of Atomic, Molecular, and Optical Physics (Springer Nature
[53] Eides M I, Grotch H, Shelyuto V A 2007 Theory of Light Hydrogenic Bound States (Berlin, Heidelberg: Springer-Verlag
[54] Bergeson S D, Balakrishnan A, Baldwin K G H, Lucatorto T B, Marangos J P, McIlrath T J, O'Brian T R, Rolston S L, Sansonetti C J, Wen J, Westbrook N, Cheng C H, Eyler E E 1999 Phys. Scr. T 83 76
[55] Bergeson S D, Baldwin K, Lucatorto T B, McIlrath T J, Cheng C H, Eyler E E 2000 J. Opt. Soc. Am. B 17 1599Google Scholar
[56] Lichten W, Shiner D, Zhou Z X 1992 Phys. Rev. A 43 1663(RGoogle Scholar
[57] Kraemer S, Moens J, Athanasakis-Kaklamanakis M, Bara S, Beeks K, Chhetri P, Chrysalidis K, Claessens A, Cocolios T E, Correia J G, Witte H D, Ferrer R, Geldhof S, Heinke R, Hosseini N, Huyse M, Köster U, Kudryavtsev Y, Laatiaoui M, Lică R, Magchiels G, Manea V, Merckling C, Pereira L, Raeder S, Schumm T, Sels S, Thirolf P, Tunhuma S, Bergh P, Duppen P, Vantomme A, Verlinde M, Villarreal R, Wahl U 2023 Nature 617 706Google Scholar
[58] Tiedau J, Okhapkin M V, Zhang K, Thielking J, Zitzer G, Peik E, Schaden F, Pronebner T, Morawetz I, De Col LT, Schneider F, Leitner A, Pressler M, Kazakov G, Beeks K, Sikorsky T, Schumm T 2024 Phys. Rev. Lett. 132 182501Google Scholar
[59] Elwell R, Schneider C, Jeet J, Terhune J, Morgan H, Alexandrova A, Tran T, Derevianko A, Hudson E 2024 Phys. Rev. Lett. 133 013201Google Scholar
[60] Peik E, Schumm T, Safronova M S, Palffy A, Weitenberg J, Thirolf P G 2021 Quantum Sci. Technol. 6 034002Google Scholar
[61] Wense L, Seiferle B 2020 Eur. Phys. J. A 56 277Google Scholar
[62] Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar
[63] Epp S W, López-Urrutia J C, Brenner G, Mäckel V, Mokler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhöfer M, Martins M, Wurth W, Ullrich J 2007 Phys. Rev. Lett. 98 183001Google Scholar
[64] Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar
[65] Kromer K, Lyu C, Door M, Filianin P, Harman Z, Herkenhoff J, Indelicato P, Keitel C H, Lange D, Novikov Y N, Schweiger C, Eliseev S, Blaum K 2023 Phys. Rev. Lett. 131 223002Google Scholar
[66] Chen S L, Zhou Z Q, Li J G, Zhang T X, Li C B, Shi T Y, Huang Y, Gao K L, Guan H 2024 Phys. Rev. Res. 6 013030Google Scholar
[67] Ghimire1 S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138Google Scholar
[68] Xu B, Chen Z, Hänsch T W, Picqué N 2024 Nature 627 289Google Scholar
[69] Jayich A M, Long X, Campbell W C 2016 Phys. Rev. X 6 041004Google Scholar
-
图 3 拉姆齐频率梳光谱方法原理示意图[23] (a)单一原子能级情况下扫描脉冲延时布居数的演化规律; (b)多原子能级情况下扫描脉冲延时布居数的演化规律
Fig. 3. A schematically view of the principle of the Ramsey comb spectroscopy[23]: (a) The population of the upper state oscillate with a single frequency if only one transition is excited; (b) the population of the upper state oscillate with multiple frequencies if multiple transitions are excited.
-
[1] Hänsch T W, Shaolow A L, Series G W 1979 Sc. Am. 240 94Google Scholar
[2] Hänsch T W, Alnis J, Fendel P, Fischer M, Gohle C, Herrmann M, Holzwarth R, Kolachevsky N, Udem T, Zimmermann M 2005 Philos. Trans. R. Soc. London, Ser. A 363 2155Google Scholar
[3] Gao H, Vanderhaeghen M 2022 Rev. Mod. Phys. 94 015002Google Scholar
[4] Rooij R van, Borbely J S, Simonet J, Hoogerland M D, Eikema K S E, Rozendaal R A, Vassen W 2011 Science 333 196Google Scholar
[5] Sun Y R, Hu S M 2020 Natl. Sci. Rev. 7 1818Google Scholar
[6] Jentschura U D, Hass M 2004 Can. J. Phys. 82 103
[7] Rengelink R J, Werf Y, Notermans R, Jannin R, Eikema K S E, Hoogerland M D Vassen W 2018 Nat. Phys. 14 1132Google Scholar
[8] Qi X Q, Zhang P P, Yan Z C, Drake G W, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar
[9] Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W, Zhong Z X 2023 Phys. Rev. Lett. 131 103002Google Scholar
[10] Cozijn F, Diouf M, Ubachs W 2023 Phys. Rev. Lett. 131 073001Google Scholar
[11] Schiller S 2022 Contemporary Phys. 63 247Google Scholar
[12] Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 Science 358 79Google Scholar
[13] Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 119 263002Google Scholar
[14] Indelicato P 2019 J. Phys. B 52 232001Google Scholar
[15] Karshenboim S G 2005 Phys. Rep. 422 1Google Scholar
[16] Hänsch T 2006 Rev. Mod. Phys. 78 1297Google Scholar
[17] Parthey C, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, and Hänsch T 2011 Phys. Rev. Lett. 107 203001Google Scholar
[18] Grinin A, Matveev A, Yost D C, Maisenbacher L, Wirthl V, Pohl R, Hänsch T W, Udem T 2020 Science 370 1061Google Scholar
[19] Bergeson S D, Balakrishnan A, Baldwin K G, Lucatorto T B, Marangos J P, McIlrath T J, O'Brian T R, Rolston S L, Sansonetti C J, Wen J, Westbrook N, Cheng C H, Eyler E E 1998 Phys. Rev. Lett. 80 3475Google Scholar
[20] Semczuk M 2009 M. S. Thesis (Warsaw: University of Warsaw
[21] Gohle C, Udem T, Herrmann M, Rauschenberger J, Holzwarth R, Schuessler H A, Krausz F, Hänsch T W 2005 Nature 436 234Google Scholar
[22] Jones R J, Moll K D, Thorpe M J, Ye J 2005 Phys. Rev. Lett. 94 193201Google Scholar
[23] Morgenweg J, Barmes I, Eikema K S 2014 Nat. Phys. 10 30Google Scholar
[24] Pupeza I, Holzberger S, Eidam T, Carstens H, Esser D, Weitenberg J, Rußbüldt P, Rauschenberger J, Limpert J, Udem T, Tünnermann A, Hänsch T W, Apolonski A, Krausz F, Fill E 2013 Nat. Photonics 7 608Google Scholar
[25] Porat G, Heyl C M, Schoun S B, Benko C, Dörre N, Corwin K L, Ye J 2018 Nat. Photonics 12 387Google Scholar
[26] Zhang C, Ooi T, Higgins J S, Doyle J F, von der Wense L, Beeks K, Leitner A, Kazakov G, Li P, Thirolf P G, Schumm T, Ye J 2024 Nature 633 63Google Scholar
[27] Dreissen L S, Roth C, Gründeman E L, Krauth J J, Favier M G, Eikema K S 2020 Phys. Rev. A 101 052509Google Scholar
[28] Altmann R, Galtier S, Dreissen L, Eikema K 2016 Phys. Rev. Lett. 117 173201Google Scholar
[29] Haas M, Jentschura U, Keitel C, Kolachevsky N, Herrmann M, Fendel P, Fischer M, Udem T, Holzwarth R, Hänsch T, Scully M, Agarwal G 2006 Phys. Rev. A 73 052501Google Scholar
[30] Herrmann M, Haas M, Jentschura U D, Kottmann F, Leibfried D, Saathoff G, Gohle C, Ozawa A, Batteiger V, Knünz S, Kolachevsky N, Schüssler H, Hänsch T, Udem T 2009 Phys. Rev. A 79 052505Google Scholar
[31] Moreno J, Schmid F, Weitenberg J, Karshenboim S G, Hänsch T W, Udem T, Ozawa A 2023 Eur. Phys. J. D 77 67Google Scholar
[32] Krauth J J, Dreissen L S, Roth C, Gründeman E L, Collombon M, Favier M, Eikema K S 2019 arXiv: 1910.13192
[33] Chen T, Du L J, Song H F, Liu P L, Huang Y, Tong X, Guan H, Gao K L 2015 Chin. Phys. Lett. 32 083701Google Scholar
[34] Eyler1 E, Chieda1 D, Stowe M, Thorpe M, Schibli T, Ye J 2008 Eur. Phys. J. D 48 43Google Scholar
[35] Kandula D Z, Gohle C, Pinkert T J, Ubachs W, Eikema K S 2010 Phys. Rev. Lett. 105 063001Google Scholar
[36] Scheidegger S , Merkt F 2024 Phys. Rev. Lett. 132 113001Google Scholar
[37] Zhang J, Hua L Q, Yu S G, Chen Z, Liu X J 2019 Chin. Phys. B 28 044206
[38] Zhang J, Hua L Q, Chen Z, Zhu M, Gong C, Liu X J, 2020 Chin. Phys. Lett. 37 124203
[39] Holzwarth R, Nevsky A Y, Zimmermann M, Udem T, Hänsch T W, Von Zanthier J, Walther H, Knight J C, Wadsworth W J, Russell P S, Skvortsov M N, Bagayev N 2001 Appl. Phys. B 73 269Google Scholar
[40] Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68Google Scholar
[41] Ozawa A, Kobayashi Y 2013 Phys. Rev. A 87 022507Google Scholar
[42] Zhu M F, Xiao Z R, Zhang H Z, Hua L Q, Liu Y N, Zuo Z, Xu S P, Liu X J 2024 Opt. Lett. 49 3757Google Scholar
[43] Cavalieri S, Materazzi M, Eramo R 2002 Opt. Lasers Eng. 37 577Google Scholar
[44] Witte S, Zinkstok R T, Ubachs W, Hogervorst W, Eikema K S 2005 Science 307 400Google Scholar
[45] Ramsey N F 1949 Phys. Rev. 76 996Google Scholar
[46] Pohl R, Antognini1A, Nez F, Amaro F, Biraben F, Cardoso J, Covita D, Dax A, Dhawan S, Fernandes L, Giesen A, Graf T, Hansch T, Indelicato P, Julien L, Kao C, Knowles P, Bigot E, Liu Y, Lopes J, Ludhova L, Monteiro C, Mulhauser F, Nebel T, Rabinowitz P, Santos J, Schaller L, Schuhmann K, Schwob C, Taqqul1 D, Veloso J, Kottmann F 2010 Nature 466 213Google Scholar
[47] Brandt A D, Cooper S F, Rasor C, Burkley Z, Matveev A, Yost D 2022 Phys. Rev. Lett. 128 023001Google Scholar
[48] Karshenboim S G., Ivanov V G 2002 Eur. Phys. J. D 19 13Google Scholar
[49] Karshenboim S G., Ivanov V G 2002 Phys. Lett. B 524 259Google Scholar
[50] Jentschura U D, Matveev A, Parthey C G, Alnis J, Pohl R, Udem Th, Kolachevsky N, Hänsch T W 2011 Phys. Rev. A 83 042505Google Scholar
[51] Yerokhin V A, Pachucki K, Patkóš V 2019 Ann. Phys. 531 1800324Google Scholar
[52] Drake G W F 2023 Springer Handbook of Atomic, Molecular, and Optical Physics (Springer Nature
[53] Eides M I, Grotch H, Shelyuto V A 2007 Theory of Light Hydrogenic Bound States (Berlin, Heidelberg: Springer-Verlag
[54] Bergeson S D, Balakrishnan A, Baldwin K G H, Lucatorto T B, Marangos J P, McIlrath T J, O'Brian T R, Rolston S L, Sansonetti C J, Wen J, Westbrook N, Cheng C H, Eyler E E 1999 Phys. Scr. T 83 76
[55] Bergeson S D, Baldwin K, Lucatorto T B, McIlrath T J, Cheng C H, Eyler E E 2000 J. Opt. Soc. Am. B 17 1599Google Scholar
[56] Lichten W, Shiner D, Zhou Z X 1992 Phys. Rev. A 43 1663(RGoogle Scholar
[57] Kraemer S, Moens J, Athanasakis-Kaklamanakis M, Bara S, Beeks K, Chhetri P, Chrysalidis K, Claessens A, Cocolios T E, Correia J G, Witte H D, Ferrer R, Geldhof S, Heinke R, Hosseini N, Huyse M, Köster U, Kudryavtsev Y, Laatiaoui M, Lică R, Magchiels G, Manea V, Merckling C, Pereira L, Raeder S, Schumm T, Sels S, Thirolf P, Tunhuma S, Bergh P, Duppen P, Vantomme A, Verlinde M, Villarreal R, Wahl U 2023 Nature 617 706Google Scholar
[58] Tiedau J, Okhapkin M V, Zhang K, Thielking J, Zitzer G, Peik E, Schaden F, Pronebner T, Morawetz I, De Col LT, Schneider F, Leitner A, Pressler M, Kazakov G, Beeks K, Sikorsky T, Schumm T 2024 Phys. Rev. Lett. 132 182501Google Scholar
[59] Elwell R, Schneider C, Jeet J, Terhune J, Morgan H, Alexandrova A, Tran T, Derevianko A, Hudson E 2024 Phys. Rev. Lett. 133 013201Google Scholar
[60] Peik E, Schumm T, Safronova M S, Palffy A, Weitenberg J, Thirolf P G 2021 Quantum Sci. Technol. 6 034002Google Scholar
[61] Wense L, Seiferle B 2020 Eur. Phys. J. A 56 277Google Scholar
[62] Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar
[63] Epp S W, López-Urrutia J C, Brenner G, Mäckel V, Mokler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhöfer M, Martins M, Wurth W, Ullrich J 2007 Phys. Rev. Lett. 98 183001Google Scholar
[64] Beiersdorfer P, Träbert E, Brown G V, Clementson J, Thorn D B, Chen M H, Cheng K T, Sapirstein J 2014 Phys. Rev. Lett. 112 233003Google Scholar
[65] Kromer K, Lyu C, Door M, Filianin P, Harman Z, Herkenhoff J, Indelicato P, Keitel C H, Lange D, Novikov Y N, Schweiger C, Eliseev S, Blaum K 2023 Phys. Rev. Lett. 131 223002Google Scholar
[66] Chen S L, Zhou Z Q, Li J G, Zhang T X, Li C B, Shi T Y, Huang Y, Gao K L, Guan H 2024 Phys. Rev. Res. 6 013030Google Scholar
[67] Ghimire1 S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138Google Scholar
[68] Xu B, Chen Z, Hänsch T W, Picqué N 2024 Nature 627 289Google Scholar
[69] Jayich A M, Long X, Campbell W C 2016 Phys. Rev. X 6 041004Google Scholar
计量
- 文章访问数: 800
- PDF下载量: 45
- 被引次数: 0