搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光频链接的双光梳气体吸收光谱测量

张伟鹏 杨宏雷 陈馨怡 尉昊赟 李岩

引用本文:
Citation:

光频链接的双光梳气体吸收光谱测量

张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩

Optical frequency linked dual-comb absorption spectrum measurement

Zhang Wei-Peng, Yang Hong-Lei, Chen Xin-Yi, Wei Hao-Yun, Li Yan
PDF
导出引用
  • 双光梳光谱技术以其无运动部件快速采样、高分辨率探测等优势成为宽带激光光谱测量中的热点技术.但受限于常用微波锁定双光梳光源间的噪声特性,双光梳光谱技术仍难以发挥其探测潜能.本文报道一种光频域互相链接的双光梳光谱探测方案.通过将两台激光器的偏置频率同时锁定到一个窄线宽激光器上,既免去了结构复杂且成本高昂的非线性自参考系统,又将双光梳间的共同参考点设置到了光频范围,抑制了双光梳光谱采样抖动,实现光谱探测性能的提升.13C2H2的1+3 P支光谱数据测量数据分析结果表明:谱线位置与文献结果符合良好,光谱分辨率为0.086 cm-1,信噪比 200:1(62.5 ms,100幅平均),相应的秒均噪声等效吸收系数达6.0106 cm-1Hz-1/2.该工作为双光梳光谱测量的实际应用提供了一种高精度、低成本、易于实现的解决方案.
    Dual-comb spectroscopy is becoming a highlighted topic in broadband spectrum measurement techniques because of two outstanding advantages. One is its highly stable output frequency, which leads to an appealing resolution, and the other is the omitting of moving parts, which helps achieve extreme fast sampling rate. Utilizing the traditional radio frequency linked combs, however, obstructs the dual-comb spectroscopy reaching satisfied performance because the phase noise of the radio frequency standard causes the dual-comb mutual coherence to severely degrade. Specifically, traditional frequency comb stabilizes the carrier envelope offset at a radio frequency by a self-reference system, and the order number of each output comb tooth is over a hundred thousand. Thus, the phase noise of the radio frequency reference is significantly multiplied in output optical frequency by the same order of magnitude as the tooth order number. In this paper, we demonstrate an optical frequency linked dual-comb spectrometer where the two combs are locked to a common narrow linewidth laser. In this configuration, the two combs are synchronized at an identical optical frequency, which means that the carrier envelope offset of the two combs are changed to an optical frequency and the order number of the output comb teeth are reduced by two orders of magnitude. Therefore, not only the complex and costly self-reference system can be removed but also the phase noise of the optical frequency of each comb tooth is effectively reduced, which leads to lower mutual frequency jitters and better mutual coherence. To prove the performance, we measure the 1+3 P branch of 13C2H2 molecular and the results accord well with the reported line positions and reveals a spectral resolution of 0.086 cm-1. The average signal-to-noise ratio exceeds 200:1 (62.5 ms, 100 times on average) and the noise equivalent coefficient is 6.0106 cm-1Hz-1/2. This work provides a solution for pragmatic dual-comb spectroscopy with high resolution and low-cost configuration.
      通信作者: 尉昊赟, luckiwei@mail.tsinghua.edu.cn
    • 基金项目: 国家重大科学仪器设备开发专项(批准号:2013YQ47067502)和国家自然科学基金(批准号:61775114)资助的课题.
      Corresponding author: Wei Hao-Yun, luckiwei@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Key Scientific Instrument and Equipment Development Projects of China (Grant No. 2013YQ47067502) and the National Natural Science Foundation of China (Grant No. 61775114).
    [1]

    Newbury N 2011 Nat. Photon. 5 186

    [2]

    Coddington I, Swann W, Newbury N 2009 Nat. Photon. 3 351

    [3]

    Giorgetta F, Swann W, Sinclair S, Baumann E, Conddington I, Newbury N 2013 Nat. Photon. 7 434

    [4]

    Lomsadze B, Cundiff S 2017 Sci. Rep. 7 14018

    [5]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601]

    [6]

    Coddington I, Swan W, Newbury N 2008 Phys. Rev. Lett. 100 013902

    [7]

    Bernhardt B, Ozawa A, Jacquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hnsch T, Picqu N 2009 Nat. Photon. 4 55

    [8]

    Baumann E, Giorgetta F, Swann W, Zolot A, Coddington I, Newbury N 2011 Phys. Rev. A 84 062513

    [9]

    Ideguchi T, Poisson A, Guelachvili G, Picqu N, Hnsch T 2014 Nat. Commun. 5 3375

    [10]

    Cassinerio M, Gambetta A, Coluccelli N, Laporta P, Galzerano G 2014 Appl. Phys. Lett. 104 231102

    [11]

    Okubo S, Iwakuni K, Inaba H, Hosaka K, Onae A, Sasada H, Hong F 2015 Appl. Phys. Express 8 082402

    [12]

    Coddington I, Newbury N, Swann W 2016 Optica 3 414

    [13]

    Yang H, Wei H, Zhang H, Chen K, Li Y, Smolski V, Vodopyanov K 2016 Appl. Opt. 55 6321

    [14]

    Yang H L, Wei H Y, Li Y, Ren L B, Zhang H Y 2014 Spectroscopy and Spectral Analysis 34 335 (in Chinese) [杨宏雷, 尉昊赟, 李岩, 任利兵, 张弘元 2014 光谱学与光谱分析 34 335]

    [15]

    Yang H, Wu X, Zhang H, Zhao S, Yang L, Wei H, Li Y 2016 Appl. Opt. 55 D29

    [16]

    Yang H, Wei H, Li Y 2016 Chin. Phys. B 25 044207

    [17]

    Thorpe J, Ye J 2008 Appl. Phys. B 91 397

    [18]

    Adler F, Thorpe J, Kevin C 2010 Ann. Rev. Anal. Chem. 3 175

    [19]

    Foltynowicz A, Masłowski P, Fleisher A, Bjork B, Ye J 2012 Appl. Phys. B 110 163

    [20]

    Khodabakhsh A, Alrahman C, Foltynowicz A 2014 Opt. Lett. 39 5034

    [21]

    Hodges T, Layer P, Miller W 2004 Rev. Sci. Instrum. 75 849

    [22]

    Mondelain D, Sala T, Kassi S, Romanini D, Marangoni M, Campargue A 2015 J. Quant. Spectrosc. Radat. Transfer. 154 35

    [23]

    Ball S, Povey I, Norton E, Jones R 2011 Chem. Phys. Lett. 342 113

    [24]

    Thorpe M, Moll K, Jones R, Safdi B, Ye J 2006 Science 311 1595

    [25]

    Edwards C, Margolis H, Barwood G, Lea S, Gill P, Rowley W 2005 Appl. Phys. B 80 977

    [26]

    Jones D, Diddams S, Ranka J, Stentz A, Windeler R, Hall J, Cundiff S 2000 Science 288 635

    [27]

    Foltynowicz A, Masłowski P, Ban T, Adler F, Cossel K, Briles T, Ye J 2011 Faraday Discuss. 150 23

    [28]

    Rubiola E 2009 Phase Noise and Frequency Stability in Oscillators (Cambridge: Cambridge University Press) pp29-30

  • [1]

    Newbury N 2011 Nat. Photon. 5 186

    [2]

    Coddington I, Swann W, Newbury N 2009 Nat. Photon. 3 351

    [3]

    Giorgetta F, Swann W, Sinclair S, Baumann E, Conddington I, Newbury N 2013 Nat. Photon. 7 434

    [4]

    Lomsadze B, Cundiff S 2017 Sci. Rep. 7 14018

    [5]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601]

    [6]

    Coddington I, Swan W, Newbury N 2008 Phys. Rev. Lett. 100 013902

    [7]

    Bernhardt B, Ozawa A, Jacquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hnsch T, Picqu N 2009 Nat. Photon. 4 55

    [8]

    Baumann E, Giorgetta F, Swann W, Zolot A, Coddington I, Newbury N 2011 Phys. Rev. A 84 062513

    [9]

    Ideguchi T, Poisson A, Guelachvili G, Picqu N, Hnsch T 2014 Nat. Commun. 5 3375

    [10]

    Cassinerio M, Gambetta A, Coluccelli N, Laporta P, Galzerano G 2014 Appl. Phys. Lett. 104 231102

    [11]

    Okubo S, Iwakuni K, Inaba H, Hosaka K, Onae A, Sasada H, Hong F 2015 Appl. Phys. Express 8 082402

    [12]

    Coddington I, Newbury N, Swann W 2016 Optica 3 414

    [13]

    Yang H, Wei H, Zhang H, Chen K, Li Y, Smolski V, Vodopyanov K 2016 Appl. Opt. 55 6321

    [14]

    Yang H L, Wei H Y, Li Y, Ren L B, Zhang H Y 2014 Spectroscopy and Spectral Analysis 34 335 (in Chinese) [杨宏雷, 尉昊赟, 李岩, 任利兵, 张弘元 2014 光谱学与光谱分析 34 335]

    [15]

    Yang H, Wu X, Zhang H, Zhao S, Yang L, Wei H, Li Y 2016 Appl. Opt. 55 D29

    [16]

    Yang H, Wei H, Li Y 2016 Chin. Phys. B 25 044207

    [17]

    Thorpe J, Ye J 2008 Appl. Phys. B 91 397

    [18]

    Adler F, Thorpe J, Kevin C 2010 Ann. Rev. Anal. Chem. 3 175

    [19]

    Foltynowicz A, Masłowski P, Fleisher A, Bjork B, Ye J 2012 Appl. Phys. B 110 163

    [20]

    Khodabakhsh A, Alrahman C, Foltynowicz A 2014 Opt. Lett. 39 5034

    [21]

    Hodges T, Layer P, Miller W 2004 Rev. Sci. Instrum. 75 849

    [22]

    Mondelain D, Sala T, Kassi S, Romanini D, Marangoni M, Campargue A 2015 J. Quant. Spectrosc. Radat. Transfer. 154 35

    [23]

    Ball S, Povey I, Norton E, Jones R 2011 Chem. Phys. Lett. 342 113

    [24]

    Thorpe M, Moll K, Jones R, Safdi B, Ye J 2006 Science 311 1595

    [25]

    Edwards C, Margolis H, Barwood G, Lea S, Gill P, Rowley W 2005 Appl. Phys. B 80 977

    [26]

    Jones D, Diddams S, Ranka J, Stentz A, Windeler R, Hall J, Cundiff S 2000 Science 288 635

    [27]

    Foltynowicz A, Masłowski P, Ban T, Adler F, Cossel K, Briles T, Ye J 2011 Faraday Discuss. 150 23

    [28]

    Rubiola E 2009 Phase Noise and Frequency Stability in Oscillators (Cambridge: Cambridge University Press) pp29-30

  • [1] 赵瀚宇, 曹士英, 戴少阳, 杨涛, 左娅妮, 胡明列. 基于光谱增强技术实现对532 nm波长激光频率标定. 物理学报, 2024, 73(9): 094204. doi: 10.7498/aps.73.20240106
    [2] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [3] 丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军. 基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法. 物理学报, 2022, 71(14): 144203. doi: 10.7498/aps.71.20220147
    [4] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [5] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [6] 饶冰洁, 张攀, 李铭坤, 杨西光, 闫露露, 陈鑫, 张首刚, 张颜艳, 姜海峰. 用于光腔衰荡光谱测量的多支路掺铒光纤飞秒光梳系统. 物理学报, 2022, 71(8): 084203. doi: 10.7498/aps.71.20212162
    [7] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [8] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [9] 郑立, 刘寒, 汪会波, 王阁阳, 蒋建旺, 韩海年, 朱江峰, 魏志义. 极紫外飞秒光学频率梳的产生与研究进展. 物理学报, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [10] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [11] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法. 物理学报, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [12] 彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳. 飞秒脉冲非对称互相关绝对测距. 物理学报, 2018, 67(21): 210601. doi: 10.7498/aps.67.20181274
    [13] 武跃龙, 李睿, 芮扬, 姜海峰, 武海斌. 6Li原子跃迁频率和超精细分裂的精密测量. 物理学报, 2018, 67(16): 163201. doi: 10.7498/aps.67.20181021
    [14] 才啟胜, 黄旻, 韩炜, 刘怡轩, 路向宁. 大孔径空间外差干涉光谱成像技术多谱段成像仿真. 物理学报, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [15] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化. 物理学报, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [16] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [17] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法. 物理学报, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [18] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [19] 臧华平, 曹磊峰, 王传珂, 蒋刚, 魏来, 范伟, 周维民, 谷渝秋. "之"字形光栅衍射特性的数值模拟研究. 物理学报, 2011, 60(3): 034215. doi: 10.7498/aps.60.034215
    [20] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
计量
  • 文章访问数:  8493
  • PDF下载量:  273
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-20
  • 修回日期:  2018-02-08
  • 刊出日期:  2018-05-05

/

返回文章
返回