搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学频率梳基于光谱干涉实现绝对距离测量

吴翰钟 曹士英 张福民 曲兴华

引用本文:
Citation:

光学频率梳基于光谱干涉实现绝对距离测量

吴翰钟, 曹士英, 张福民, 曲兴华

Spectral interferometry based absolute distance measurement using frequency comb

Wu Han-Zhong, Cao Shi-Ying, Zhang Fu-Min, Qu Xing-Hua
PDF
导出引用
  • 详细分析了光学频率梳光谱干涉的原理, 建立了较全面的光谱干涉的数学模型, 为实现绝对距离测量提供理论分析基础. 基于光谱干涉, 指出通过光谱干涉条纹的振荡频率, 即一次傅里叶变换, 可以实现绝对距离测量, 数值模拟结果表明, 最大测量误差为1.5 nm; 提出了一种等效的多波长并行零差干涉的方法, 分析了多波长并行零差干涉法的测距原理. 数值模拟结果表明, 多波长并行零差干涉法的最大误差为8.7 nm; 通过脉冲啁啾实现绝对测距, 分析了基于脉冲啁啾实现绝对测距的原理, 数值模拟结果表明, 最大测距误差为5.3 nm.
    Spectral interferometry using frequency comb has become a powerful approach to absolute distance measurement. In this paper, we analyze the principle of spectral interferometry in detail. With the consideration of dispersion, pulse chirp and the power ratio of the reference pulse and the measurement pulse, we develop a Gaussian model, which can be used to determine distances. The frequency of the spectral interference fringe is of key importance. The distances can be directly determined by the frequency of the spectral interference fringe through one-step fast Fourier transform with no filters during the data processing. The simulation results show that the maximum deviation is 1.5 nm when the distance is 1.5 mm theoretically. The comb consists of hundreds of thousands of teeth in the spectral domain, and each tooth can be regarded as a cw laser. We propose a method based on the phases of two close modes. The principle is introduced, and the maximum deviation is 8.7 nm with a distance of 1.5 mm while the minimum deviation is 0.3 nm corresponding to distance of 0.5 mm. We theoretically show that the linear pulse chirp can be used for distance measurement. The measurement principle is analyzed, and the simulation shows that the maximum deviation is 5.3 nm when the distance is 1.2 mm.
    • 基金项目: 国家自然科学基金(批准号: 51327006, 51105274)和高等学校博士学科点专项科研基金(批准号: 20120032130002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51327006, 51105274), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032130002).
    [1]

    Liao S S, Yang T, Dong J J 2014 Chin. Phys. B 23 073201

    [2]

    Zhu M H, Wu X J, Wei H Y, Zhang L Q, Zhang J T, Li Y 2013 Acta Phys. Sin. 62 070702 (in Chinese) [朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩 2013 物理学报 62 070702]

    [3]

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603 (in Chinese) [邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 物理学报 62 170603]

    [4]

    Zhang Y C, Wu J Z, Li Y Q, Jin L, Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S T 2012 Chin. Phys. B 21 113701

    [5]

    Wu H Z, Cao S Y, Zhang F M, Xing S J, Qu X H 2014 Acta Phys. Sin. 63 100601 (in Chinese) [吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华 2014 物理学报 63 100601]

    [6]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512

    [7]

    Baumann E, Giorgetta F R, Coddington I, Sinclair L C, Knabe K, Swann W C, Newbury N R 2013 Opt. Lett. 38 2026

    [8]

    Hyun S, Kim Y J, Kim Y, Kim S W 2010 CIRP Annals: Manufacturing Technology 59 555

    [9]

    Schuhler N, Salvadé Y, Lévêque S, Dändliker R, Holzwarth R 2006 Opt. Lett. 31 3101

    [10]

    Salvadé Y, Schuhler N, Lévêque S, Floch S L 2008 Appl. Opt. 47 2715

    [11]

    Ye J 2004 Opt. Lett. 29 1153

    [12]

    Wang X N, Takahashi S, Takamasu K, Matsumoto H 2012 Opt. Express 20 2725

    [13]

    Balling P, Křen P, Mašika P, van den Berg S A 2009 Opt. Express 17 9300

    [14]

    Wu H, Zhang F, Cao S, Xing S, Qu X 2014 Opt. Express 22 10380

    [15]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photon. 3 351

    [16]

    Zhang H, Wei H, Wu X, Yang H, Li Y 2014 Opt. Express 22 6597

    [17]

    Lee J, Han S, Lee K, Bae E, Kim S, Lee S, Kim S W, Kim Y J 2013 Meas. Sci. Technol. 24 045201

    [18]

    Joo K, Kim S 2006 Opt. Express 14 5954

    [19]

    Cui M, Zeitouny M G, Bhattacharya N, van den Berg S A, Urbach H P 2011 Opt. Express 19 6549

    [20]

    Berg van den S A, Persijn S T, Kok G J P 2012 Phys. Rev. Lett. 108 183901

    [21]

    Li Y, Hu K, Ji R, Liu D, Zhou W 2014 Opt. Eng. 53 122409

  • [1]

    Liao S S, Yang T, Dong J J 2014 Chin. Phys. B 23 073201

    [2]

    Zhu M H, Wu X J, Wei H Y, Zhang L Q, Zhang J T, Li Y 2013 Acta Phys. Sin. 62 070702 (in Chinese) [朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩 2013 物理学报 62 070702]

    [3]

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603 (in Chinese) [邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 物理学报 62 170603]

    [4]

    Zhang Y C, Wu J Z, Li Y Q, Jin L, Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S T 2012 Chin. Phys. B 21 113701

    [5]

    Wu H Z, Cao S Y, Zhang F M, Xing S J, Qu X H 2014 Acta Phys. Sin. 63 100601 (in Chinese) [吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华 2014 物理学报 63 100601]

    [6]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512

    [7]

    Baumann E, Giorgetta F R, Coddington I, Sinclair L C, Knabe K, Swann W C, Newbury N R 2013 Opt. Lett. 38 2026

    [8]

    Hyun S, Kim Y J, Kim Y, Kim S W 2010 CIRP Annals: Manufacturing Technology 59 555

    [9]

    Schuhler N, Salvadé Y, Lévêque S, Dändliker R, Holzwarth R 2006 Opt. Lett. 31 3101

    [10]

    Salvadé Y, Schuhler N, Lévêque S, Floch S L 2008 Appl. Opt. 47 2715

    [11]

    Ye J 2004 Opt. Lett. 29 1153

    [12]

    Wang X N, Takahashi S, Takamasu K, Matsumoto H 2012 Opt. Express 20 2725

    [13]

    Balling P, Křen P, Mašika P, van den Berg S A 2009 Opt. Express 17 9300

    [14]

    Wu H, Zhang F, Cao S, Xing S, Qu X 2014 Opt. Express 22 10380

    [15]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photon. 3 351

    [16]

    Zhang H, Wei H, Wu X, Yang H, Li Y 2014 Opt. Express 22 6597

    [17]

    Lee J, Han S, Lee K, Bae E, Kim S, Lee S, Kim S W, Kim Y J 2013 Meas. Sci. Technol. 24 045201

    [18]

    Joo K, Kim S 2006 Opt. Express 14 5954

    [19]

    Cui M, Zeitouny M G, Bhattacharya N, van den Berg S A, Urbach H P 2011 Opt. Express 19 6549

    [20]

    Berg van den S A, Persijn S T, Kok G J P 2012 Phys. Rev. Lett. 108 183901

    [21]

    Li Y, Hu K, Ji R, Liu D, Zhou W 2014 Opt. Eng. 53 122409

  • [1] 丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军. 基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220147
    [2] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [3] 王国超, 李星辉, 颜树华, 谭立龙, 管文良. 基于飞秒光梳多路同步锁相的多波长干涉实时绝对测距及其非模糊度量程分析. 物理学报, 2021, 70(4): 040601. doi: 10.7498/aps.70.20201225
    [4] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [5] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [6] 郑立, 刘寒, 汪会波, 王阁阳, 蒋建旺, 韩海年, 朱江峰, 魏志义. 极紫外飞秒光学频率梳的产生与研究进展. 物理学报, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [7] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [8] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法. 物理学报, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [9] 武跃龙, 李睿, 芮扬, 姜海峰, 武海斌. 6Li原子跃迁频率和超精细分裂的精密测量. 物理学报, 2018, 67(16): 163201. doi: 10.7498/aps.67.20181021
    [10] 张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩. 光频链接的双光梳气体吸收光谱测量. 物理学报, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [11] 彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳. 飞秒脉冲非对称互相关绝对测距. 物理学报, 2018, 67(21): 210601. doi: 10.7498/aps.67.20181274
    [12] 梁井川, 冯国英, 张澍霖, 兰斌, 周寿桓. 高功率光纤中传输光模式与其波长相关性研究. 物理学报, 2017, 66(19): 194202. doi: 10.7498/aps.66.194202
    [13] 刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华. 光学频率梳啁啾干涉实现绝对距离测量. 物理学报, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [14] 张澍霖, 冯国英, 周寿桓. 基于空间域和频率域傅里叶变换F2的光纤模式成分分析. 物理学报, 2016, 65(15): 154202. doi: 10.7498/aps.65.154202
    [15] 孟祥松, 张福民, 曲兴华. 基于重采样技术的调频连续波激光绝对测距高精度及快速测量方法研究. 物理学报, 2015, 64(23): 230601. doi: 10.7498/aps.64.230601
    [16] 时光, 张福民, 曲兴华, 孟祥松. 高分辨率调频连续波激光绝对测距研究. 物理学报, 2014, 63(18): 184209. doi: 10.7498/aps.63.184209
    [17] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法. 物理学报, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [18] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [19] 朱江峰, 杜 强, 王向林, 滕 浩, 韩海年, 魏志义, 侯 洵. 飞秒钛宝石放大激光脉冲的载波包络相位测量与控制. 物理学报, 2008, 57(12): 7753-7757. doi: 10.7498/aps.57.7753
    [20] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
计量
  • 文章访问数:  4257
  • PDF下载量:  680
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-15
  • 修回日期:  2014-09-05
  • 刊出日期:  2015-01-05

光学频率梳基于光谱干涉实现绝对距离测量

  • 1. 天津大学精密测试技术及仪器国家重点实验室, 天津 300072;
  • 2. 中国计量科学研究院时间频率计量研究所, 北京 100013
    基金项目: 国家自然科学基金(批准号: 51327006, 51105274)和高等学校博士学科点专项科研基金(批准号: 20120032130002)资助的课题.

摘要: 详细分析了光学频率梳光谱干涉的原理, 建立了较全面的光谱干涉的数学模型, 为实现绝对距离测量提供理论分析基础. 基于光谱干涉, 指出通过光谱干涉条纹的振荡频率, 即一次傅里叶变换, 可以实现绝对距离测量, 数值模拟结果表明, 最大测量误差为1.5 nm; 提出了一种等效的多波长并行零差干涉的方法, 分析了多波长并行零差干涉法的测距原理. 数值模拟结果表明, 多波长并行零差干涉法的最大误差为8.7 nm; 通过脉冲啁啾实现绝对测距, 分析了基于脉冲啁啾实现绝对测距的原理, 数值模拟结果表明, 最大测距误差为5.3 nm.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回