搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法

丁永今 曹士英 林百科 王强 韩羿 方占军

引用本文:
Citation:

基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法

丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军

Method of adjusting carrier-envelope offset frequency based on electro-optic-crystal Mach-Zehnder interferometer

Ding Yong-Jin, Cao Shi-Ying, Lin Bai-Ke, Wang Qiang, Han Yi, Fang Zhan-Jun
PDF
HTML
导出引用
  • 基于电光晶体马赫-曾德(M-Z)干涉仪的载波包络相位偏移频率(carrier-envelop offset frequency, f0)调节方法是一种新颖的f0调节方法. 该方法通过改变脉冲包络而不改变载波频率实现对f0信号的调节. 本文对该方法所涉及的偏振控制装置进行了仿真, 分析了其中波片光轴偏差对输出激光偏振方向和偏振度的影响. 在实验上提出了一种光轴校准方法以减小波片光轴偏差带来的影响, 并对比了抽运电流调节方法和基于电光晶体M-Z干涉仪的f0调节方法对f0信号和光梳与激光拍频信号(beat note, fb)的影响. 实验结果表明改变抽运电流, 在f0调节量为9 MHz的情况下, 对fb影响为7 MHz. 而在相同f0调节量下, 电光晶体M-Z干涉仪f0调节方法对fb 的影响为0.2 MHz, 仅为抽运电流对fb影响的1/35, 从而验证了基于电光晶体M-Z干涉仪的f0调节方法可以有效降低对fb的干扰, 为利用fb锁定重复频率(repetition rate, fr), 进而实现光梳梳齿线宽的压窄提供了一种技术手段.
    Electro-optic-modulator (EOM) based Mach-Zehnder (M-Z) interferometer is a novel method of controlling the carrier envelope offset frequency (f0). It is achieved by adjusting the envelop of the pulse, while keeping the carrier frequency unchanged. In this paper, the polarization control device involved in this method is simulated, and the influences caused by the deviation of the optical axis of the wave plate on the polarization direction and the degree of output laser are analyzed. An optical axis calibration method is proposed to reduce the influence caused by the deviation of optical axis of wave plate. The effects of pump current and EOM based M-Z interferometer on f0 and the beat note (fb) between the comb and the laser are compared with each other. The experimental results show that the effect of changing the pump current on fb is 7 MHz, when the f0 adjustment quantity is 9 MHz. Under the same f0 adjustment quantity, the influence of EOM based M-Z interferometer on fb is 0.2 MHz, which is only 1/35 of the influence of pump current. Therefore, it is verified that EOM based M-Z interferometer can effectively reduce the interference to fb. It provides a technical means to narrow the line width of optical comb by using fb to lock repetition rate (fr) .
      通信作者: 曹士英, caoshiying@nim.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFF0200204)资助的课题.
      Corresponding author: Cao Shi-Ying, caoshiying@nim.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFF0200204).
    [1]

    Udem T, Reichert J, Holzwarth R, Hänsch T W 1999 Phys. Rev. Lett. 82 3568Google Scholar

    [2]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [3]

    Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hänsch T W 2000 Phys. Rev. Lett. 84 5102Google Scholar

    [4]

    Udem T, Reichert J, Holzwarth R, Hänsch T W 1999 Opt. Lett. 24 881Google Scholar

    [5]

    Hachisu H, Petit G, Nakagawa F, Hanado Y, Ido T 2017 Opt. Express 25 8511Google Scholar

    [6]

    Schliesser A, Brehm M, Keilmann F, van der Weide D 2005 Opt. Express 13 9029

    [7]

    Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Coq Y Le, Kersalé Y, Santarelli G 2009 Opt. Lett. 34 3707Google Scholar

    [8]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351

    [9]

    Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J, Kennedy C J 2019 Metrologia 56 065004Google Scholar

    [10]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [11]

    Yamanaka K, Ohmae N, Ushijima I, Takamoto M, Katori H 2015 Phys. Rev. Lett. 114 230801Google Scholar

    [12]

    Inaba H, Hosaka K, Yasuda M, Nakajima Y, Iwakuni K, Akamatsu D, Okubo S, Kohno T, Onae A, Hong F L 2013 Opt. Express 21 7891Google Scholar

    [13]

    Coddington I, Swann W C, Newbury N R 2008 Phys. Rev. Lett. 100 013902Google Scholar

    [14]

    Lee C C, Mohr C, Bethge J, Suzuki S, Fermann M E, Hartl I, Schibli T R 2012 Opt. Lett. 37 3084Google Scholar

    [15]

    McFerran J J, Swann W C, Washburn B R, Newbury N R 2006 Opt. Lett. 31 1997Google Scholar

    [16]

    Corwin K L, Newbury N R, Dudley J M, Coen S, Diddams S A, Weber K, Windeler R S 2003 Phys. Rev. Lett. 90 113904Google Scholar

    [17]

    Hudson D D, Holman K W, Jones R J, Cundiff S T, Ye J, Jones D J 2005 Opt. Lett. 30 2948Google Scholar

    [18]

    Iwakuni K, Inaba H, Nakajima Y, Kobayashi T, Hosaka K, Onae A, Hong F L 2012 Opt. Express 20 13769Google Scholar

    [19]

    Nakamura T, Tani S, Ito I, Kobayashi Y 2017 Opt. Express 25 4994Google Scholar

    [20]

    Hundertmark H, Wandt D, Fallnich C, Haverkamp N, Telle H 2004 Opt. Express 12 770Google Scholar

    [21]

    Koke S, Grebing C, Frei H, Anderson A, Assion A, Steinmeyer G 2010 Nat. Photonics 4 462Google Scholar

    [22]

    Newbury N R, Washburn B R 2005 IEEE J. Quantum Electron. 41 1388Google Scholar

    [23]

    Hänsel W, Giunta M, Lezius M, Fischer M, Holzwarth R 2017 Conference on Lasers and Electro-Optics San Jose, United States, May 14-19, 2017 pSF1C.5

    [24]

    Ning K, Hou L, Fan S T, Yan L L, Zhang Y Y, Rao B J, Zhang X F, Zhang S G, Jiang H F 2020 Chin. Phys. Lett. 37 064202Google Scholar

    [25]

    Wang H B, Han H N, Zhang Z Y, Shao X D, Zhu J F, Wei Z Y 2020 Chin. Phys. B 29 030601Google Scholar

    [26]

    Ma Y X, Meng F, Wang Y, Wang A M, Zhang Z G 2019 Chin. Opt. Lett. 17 041402Google Scholar

    [27]

    曹士英, 林百科, 袁小迪, 丁永今, 孟飞, 方占军 2021 物理学报 70 074203Google Scholar

    Cao S Y, Lin B K, Yuan X D, Ding Y J, Meng F, Fang Z J 2021 Acta Phys. Sin. 70 074203Google Scholar

    [28]

    曹士英, 孟飞, 方占军, 李天初 2012 物理学报 61 064208Google Scholar

    Cao S Y, Meng F, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 064208Google Scholar

  • 图 1  脉冲包络与载波示意图

    Fig. 1.  Diagram of the envelope and carrier of a pulse.

    图 2  基于电光晶体M-Z干涉仪的f0调节方法示意图 (a)基本原理图; (b)脉冲包络位置的演化图

    Fig. 2.  Principal of the EOM based M-Z interferometer for controlling f0: (a) Principle of f0 control device; (b) evolution of the pulse envelope.

    图 3  基于电光晶体的M-Z干涉仪示意图及光在其中的偏振方向

    Fig. 3.  Diagram of experimental device of the EOM based M-Z interferometer for controlling f0 and the polarization of the light that travels along it.

    图 4  偏振控制装置结构图, 其中QWP为1/4波片, 实线为QWP和EOM快轴, 虚线为QWP和EOM慢轴, $ \alpha $为入射光偏振方向与x轴夹角, $ \beta $为出射光偏振方向与x轴夹角

    Fig. 4.  Structure of PCD, where, QWP is quarter-wave plate, the solid lines are the fast axes of QWP and EOM, the dotted lines are the slow axes of QWP and EOM, $ \alpha $ is the angle between the polarization of the incident light and the x-axis, $ \beta $ is the angle between the polarization of the output light and the x-axis.

    图 5  器件光轴存在偏离的情况 (a)第一个1/4波片光轴发生偏离; (b)第二个1/4波片光轴发生偏离; (c) EOM光轴发生偏离

    Fig. 5.  Influence of the deviation of the optical axis on the polarization: (a) Deviation of the first QWP optical axis; (b) deviation of the second QWP optical axis; (c) deviation of the EOM optical axis.

    图 6  1/4波片光轴校准示意图

    Fig. 6.  Schematic of QWP optical axis alignment.

    图 7  光经过偏振控制装置后的偏振方向偏离角

    Fig. 7.  Deviation angle of the light after passing through polarization control device.

    图 8  实验采用的锁模激光器结构图. LD, 抽运源; EDF, 掺铒增益光纤; WDM, 波分复用器; COL, 准直器; HWP, 1/2波片; FR, 法拉第旋光器; ISO, 隔离器; M, 反射镜

    Fig. 8.  Diagram of the mode-locked laser: LD, pump laser; EDF, Er-doped fiber; WDM, 980 nm/1550 nm wavelength division multiplexing; COL, collimator; HWP, half wave plate; FR, Faraday rotator; ISO, optical isolator; M, reflective mirror.

    图 9  有无f0调节装置光谱对比

    Fig. 9.  Comparison of the spectrum with and without f0 control device.

    图 10  电光晶体M-Z干涉仪f0调节装置对f0、 fb fr 频率影响 (a) f0; (b) fb; (c) fr

    Fig. 10.  Influence of the EOM based M-Z interferometer on f0, fb and fr: (a) f0; (b) fb; (c) fr.

    图 11  抽运电流对f0、 fb fr 频率影响 (a) f0; (b) fb; (c) fr

    Fig. 11.  Influence of the pump current on f0, fb and fr: (a) f0; (b) fb; (c) fr .

    图 12  PZT对f0 fr 频率影响 (a) f0; (b) fr

    Fig. 12.  Influence of PZT on f0 and fr: (a) f0; (b) fr .

    表 1  1/4波片光轴校准数据

    Table 1.  Alignment data of the QWPs.

    1st QWP2nd QWP3th QWP4th QWP
    A side2.23°3.81°3.75°2.35°
    B side2.23°3.79°3.69°2.42°
    下载: 导出CSV
  • [1]

    Udem T, Reichert J, Holzwarth R, Hänsch T W 1999 Phys. Rev. Lett. 82 3568Google Scholar

    [2]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [3]

    Diddams S A, Jones D J, Ye J, Cundiff S T, Hall J L, Ranka J K, Windeler R S, Holzwarth R, Udem T, Hänsch T W 2000 Phys. Rev. Lett. 84 5102Google Scholar

    [4]

    Udem T, Reichert J, Holzwarth R, Hänsch T W 1999 Opt. Lett. 24 881Google Scholar

    [5]

    Hachisu H, Petit G, Nakagawa F, Hanado Y, Ido T 2017 Opt. Express 25 8511Google Scholar

    [6]

    Schliesser A, Brehm M, Keilmann F, van der Weide D 2005 Opt. Express 13 9029

    [7]

    Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Coq Y Le, Kersalé Y, Santarelli G 2009 Opt. Lett. 34 3707Google Scholar

    [8]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351

    [9]

    Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J, Kennedy C J 2019 Metrologia 56 065004Google Scholar

    [10]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [11]

    Yamanaka K, Ohmae N, Ushijima I, Takamoto M, Katori H 2015 Phys. Rev. Lett. 114 230801Google Scholar

    [12]

    Inaba H, Hosaka K, Yasuda M, Nakajima Y, Iwakuni K, Akamatsu D, Okubo S, Kohno T, Onae A, Hong F L 2013 Opt. Express 21 7891Google Scholar

    [13]

    Coddington I, Swann W C, Newbury N R 2008 Phys. Rev. Lett. 100 013902Google Scholar

    [14]

    Lee C C, Mohr C, Bethge J, Suzuki S, Fermann M E, Hartl I, Schibli T R 2012 Opt. Lett. 37 3084Google Scholar

    [15]

    McFerran J J, Swann W C, Washburn B R, Newbury N R 2006 Opt. Lett. 31 1997Google Scholar

    [16]

    Corwin K L, Newbury N R, Dudley J M, Coen S, Diddams S A, Weber K, Windeler R S 2003 Phys. Rev. Lett. 90 113904Google Scholar

    [17]

    Hudson D D, Holman K W, Jones R J, Cundiff S T, Ye J, Jones D J 2005 Opt. Lett. 30 2948Google Scholar

    [18]

    Iwakuni K, Inaba H, Nakajima Y, Kobayashi T, Hosaka K, Onae A, Hong F L 2012 Opt. Express 20 13769Google Scholar

    [19]

    Nakamura T, Tani S, Ito I, Kobayashi Y 2017 Opt. Express 25 4994Google Scholar

    [20]

    Hundertmark H, Wandt D, Fallnich C, Haverkamp N, Telle H 2004 Opt. Express 12 770Google Scholar

    [21]

    Koke S, Grebing C, Frei H, Anderson A, Assion A, Steinmeyer G 2010 Nat. Photonics 4 462Google Scholar

    [22]

    Newbury N R, Washburn B R 2005 IEEE J. Quantum Electron. 41 1388Google Scholar

    [23]

    Hänsel W, Giunta M, Lezius M, Fischer M, Holzwarth R 2017 Conference on Lasers and Electro-Optics San Jose, United States, May 14-19, 2017 pSF1C.5

    [24]

    Ning K, Hou L, Fan S T, Yan L L, Zhang Y Y, Rao B J, Zhang X F, Zhang S G, Jiang H F 2020 Chin. Phys. Lett. 37 064202Google Scholar

    [25]

    Wang H B, Han H N, Zhang Z Y, Shao X D, Zhu J F, Wei Z Y 2020 Chin. Phys. B 29 030601Google Scholar

    [26]

    Ma Y X, Meng F, Wang Y, Wang A M, Zhang Z G 2019 Chin. Opt. Lett. 17 041402Google Scholar

    [27]

    曹士英, 林百科, 袁小迪, 丁永今, 孟飞, 方占军 2021 物理学报 70 074203Google Scholar

    Cao S Y, Lin B K, Yuan X D, Ding Y J, Meng F, Fang Z J 2021 Acta Phys. Sin. 70 074203Google Scholar

    [28]

    曹士英, 孟飞, 方占军, 李天初 2012 物理学报 61 064208Google Scholar

    Cao S Y, Meng F, Fang Z J, Li T C 2012 Acta Phys. Sin. 61 064208Google Scholar

  • [1] 赵瀚宇, 曹士英, 戴少阳, 杨涛, 左娅妮, 胡明列. 基于光谱增强技术实现对532 nm波长激光频率标定. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240106
    [2] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [3] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢. 基于银纳米链的马赫-曾德干涉仪结构的生物传感器. 物理学报, 2022, 71(1): 017301. doi: 10.7498/aps.71.20211420
    [4] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [5] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [6] 毛琳, 张晓健, 李春玲, 朱仁江, 汪丽杰, 宋晏蓉, 王涛, 张鹏. 45 nm宽带可连续调谐半导体薄片激光器. 物理学报, 2021, 70(22): 224206. doi: 10.7498/aps.70.20210888
    [7] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [8] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [9] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [10] 郑立, 刘寒, 汪会波, 王阁阳, 蒋建旺, 韩海年, 朱江峰, 魏志义. 极紫外飞秒光学频率梳的产生与研究进展. 物理学报, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [11] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法. 物理学报, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [12] 张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩. 光频链接的双光梳气体吸收光谱测量. 物理学报, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [13] 武跃龙, 李睿, 芮扬, 姜海峰, 武海斌. 6Li原子跃迁频率和超精细分裂的精密测量. 物理学报, 2018, 67(16): 163201. doi: 10.7498/aps.67.20181021
    [14] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [15] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [16] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [17] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法. 物理学报, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [18] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [19] 薛力芳, 张强, 李芳, 周燕, 刘育梁. 高频调制大功率窄线宽分布反馈光纤激光器. 物理学报, 2011, 60(1): 014213. doi: 10.7498/aps.60.014213
    [20] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
计量
  • 文章访问数:  3350
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 修回日期:  2022-03-22
  • 上网日期:  2022-07-10
  • 刊出日期:  2022-07-20

/

返回文章
返回