搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重复频率倍增光频梳时域互相关绝对测距

梁旭 林嘉睿 吴腾飞 赵晖 邾继贵

引用本文:
Citation:

重复频率倍增光频梳时域互相关绝对测距

梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵

Absolute distance measurement using cross correlation interferometer with a repetition rate multiplication frequency comb

Liang Xu, Lin Jia-Rui, Wu Teng-Fei, Zhao Hui, Zhu Ji-Gui
PDF
HTML
导出引用
  • 利用法布里-珀罗标准具对光纤光频梳的重复频率(重频)进行倍增, 使光频梳重频从最初的250 MHz提升至10 GHz, 对应的脉冲间距从1200 mm缩减至30 mm, 极大地降低了脉冲互相关测距方法对参考臂扫描范围的需求. 建立了重频倍增光频梳的时域互相关干涉信号数学模型, 通过数值模拟分析了光源参数(重频、起始偏移频率)和法布里-珀罗标准具参数(色散、腔长、中心波长)对滤出光谱形状以及互相关信号的影响. 在实验中, 使用重频倍增后的光频梳进行脉冲互相关干涉绝对测距, 与参考干涉仪对比, 在210 mm范围内获得优于4 μm的测距精度.
    In this paper, the Fabry-Perot etalon is used to multiply the repetition rate of the fiber optical frequency comb. The repetition rate is amplified from 250 MHz to 10 GHz, and the corresponding pulse interval is reduced from 1200 mm to 30 mm. For the pulse cross correlation ranging method, the repetition rate multiplication can greatly reduce the length requirement of the scanning reference arm. We analyze in detail the principle of cross correlation interferometry based on repetition rate multiplication frequency comb. A numerical mode of the function is comprehensively established. The basic parameters of optical source and Fabry-Perot cavity for the influence of filtered optical spectrum and cross correlation fringe are analyzed through the numerical simulation. The multiplied frequency comb is utilized for absolute ranging with the help of a pulse cross correlation method. By comparison, our result differs from the result obtained by a conventional counting interferometer only by 4 μm for distances up to 210 mm.
      通信作者: 林嘉睿, linjr@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51835007, 51775380, 51721003)资助的课题.
      Corresponding author: Lin Jia-Rui, linjr@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51835007, 51775380, 51721003).
    [1]

    Gao W, Kim S W, Bosse H, Haitjema H, Chen Y L, Lu X D, Knapp W, Weckenmann, Estler W T, Kunzmann H A 2015 CIRP Annals – Manuf. Techn. 64 773Google Scholar

    [2]

    Schmitt R H, Peterek M, Morse E, Knapp W, Galetto M, Härtig F, Goch G, Ben H, Forbes A 2016 CIRP Annals-Manuf. Techn. 65 643Google Scholar

    [3]

    Abbott B P, Abbott R, Abbott T D, Zweizig J 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [4]

    Pellegrini S, Buller G S, Smith J M, Wallace A M, Cova S 2000 Meas. Sci. Technol. 11 712Google Scholar

    [5]

    Bobroff N 1993 Meas. Sci. Technol. 4 907Google Scholar

    [6]

    Falaggis K, Towers D P, Towers C E 2009 Opt. Lett. 34 950Google Scholar

    [7]

    Lu S, Lee C 2002 Meas. Sci. Technol. 13 1382Google Scholar

    [8]

    John D, Ben H, Andrew J L, Andrew J L, Armin J H R, Matthew S W 2014 Opt. Express 22 24869Google Scholar

    [9]

    Kim S W 2009 Nat. Photonics 3 313Google Scholar

    [10]

    Diddams S A, Vahala K, Udem T 2020 Science 369 267Google Scholar

    [11]

    Baumann E, Giorgetta F R, Coddington I, Sinclair L C, Knabe K, Swann W C, Newbury N R 2013 Opt. Lett. 38 2026Google Scholar

    [12]

    Wang G C, Jang Y S, Hyun S, Chun B J, Kang H J, Yan S H, Kim S W, Kim Y J 2015 Opt. Express 23 9121Google Scholar

    [13]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar

    [14]

    张晓声, 易旺民, 胡明皓, 杨再华, 吴冠豪 2016 物理学报 65 080602Google Scholar

    Zhang X S, Yi W M, Hu M H, Yang Z H, Wu G H 2016 Acta Phys. Sin. 65 080602Google Scholar

    [15]

    Joo K N, Kim S W 2006 Opt. Express 14 5954Google Scholar

    [16]

    Lesundak A, Voigt D, Cip O, Van den Berg S A 2017 Opt. Express 25 32570Google Scholar

    [17]

    Ye J 2004 Opt. Lett. 29 1153Google Scholar

    [18]

    Nakajima Y, Minoshima K 2015 Opt. Express 23 25979Google Scholar

    [19]

    Wu G H, Zhang F M, Liu T L, Balling P, Li J S, Qu X H 2016 Opt. Lett. 41 2366Google Scholar

    [20]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351Google Scholar

    [21]

    夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双 2021 物理学报 70 180601Google Scholar

    Xia W Z, Liu Y, He M Z, Cao S Y, Yang W L, Zhang F M, Miao D J, Li J S 2021 Acta Phys. Sin. 70 180601Google Scholar

    [22]

    赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民 2020 物理学报 69 090601Google Scholar

    Zhao X Y, Qu X H, Chen J W, Zheng J H, Wang J D, Zhang F M 2020 Acta Phys. Sin. 69 090601Google Scholar

    [23]

    Suh M G, Vahala K J 2018 Science 359 6378Google Scholar

    [24]

    Chen J, Sickler J W, Fendel P, Ippen E P, Kärtner F X, Wilken T, Holzwarth R, Hänsch T W 2008 Opt. Lett. 33 959Google Scholar

    [25]

    Haboucha A, Zhang W, Li T, Lours M, Luiten A N, Coq Y L, Santarelli G 2011 Opt. Lett. 36 3654Google Scholar

    [26]

    Lee J, Kim S W, Kim Y J 2015 Opt. Express 23 10117Google Scholar

    [27]

    Zeitouny M, Cui M, Bhattacharya N 2010 Phys. Rev. A 82 23808Google Scholar

    [28]

    Bonsch G, Potulski E 1998 Metrologia 35 133Google Scholar

  • 图 1  脉冲互相关测距原理示意图(OFC, 光频梳; BS, 分束镜; Mr, 参考镜; Mt, 目标镜; M0, 零点参考镜; PD, 光电探测器; Scope, 示波器)

    Fig. 1.  Schematic of the pulse cross-correlation ranging principle. OFC, optical frequency comb; BS, beam splitter; Mr, reference mirror; M0, zero position mirror; Mt, target mirror; PD, photodetector; Scope, oscilloscope.

    图 2  FP标准具滤梳齿示意图

    Fig. 2.  Schematic of filtered frequency comb using a FP etalon.

    图 3  光频梳重频对透射光谱的影响 (a) 理想透射谱; (c) fr = 250.001 MHz时的透射谱; (e) fr = 250.1 MHz时的透射谱; (b), (d), (f) 分别为 (a), (c), (e)的局部放大图

    Fig. 3.  Influence of frequency comb repetition rate on transmission spectrum: (a) Ideal transmission spectrum; (c) the transmission spectrum at fr = 250.001 MHz; (e) the transmission spectrum at fr = 250.1 MHz; (b), (d), (f) partial enlarged views of (a), (c), (e).

    图 4  光频梳偏频对透射光谱的影响, 其中(b)为(a)的局部放大图

    Fig. 4.  Influence of frequency comb offset frequency on transmission spectrum. (b) is partial enlarged view of (a).

    图 5  FP标准具参数对透射光谱的影响 (a) 不同腔长偏差; (c) 不同群延迟色散, (e) 不同中心波长; (b), (d), (f) 分别为(a), (c), (e)的局部放大图

    Fig. 5.  Influence of FP etalon parameter on the transmission spectrum: (a) Different cavity length deviations; (c) different group delay dispersions; (e) different center wavelengths; (b), (d), (f) partial enlarged views of (a), (c), (e).

    图 6  光源参数对透射光谱强度的影响 (a) 重频; (b) 偏频; (c) 腔长; (d) 群延迟色散

    Fig. 6.  Influence of light source parameter on the transmission intensity: (a) Repetition rate; (b) offset frequency; (c) cavity length; (d) group delay dispersion.

    图 7  光源参数对互相关信号的影响 (a) 不同重频偏差下的干涉条纹; (c) 不同偏频偏差下的干涉条纹; (b), (d) 分别为(a), (c)的局部放大图

    Fig. 7.  Influence of light source parameter on cross-correlation signal: (a) Interference fringe under different repetition rate; (c) interference fringe under different offset frequency; (b), (d) partial enlarged views of (a), (c).

    图 8  FP标准具参数对互相关信号的影响 (a) 不同群延迟色散下的干涉条纹; (c) 不同精细度下的干涉条纹; (b), (d) 分别为(a), (c)的局部放大图

    Fig. 8.  Influence of FP etalon parameter on cross-correlation signal: (a) Interference fringe under different group delay dispersion; (c) interference fringe under different finesse; (b), (d) partial enlarged views of (a), (c).

    图 9  重频倍增光频梳时域互相关绝对测距原理示意图(Frequency comb, 光频梳; CL1—3, 准直器; Lens1和Lens2, 模式匹配透镜; Cavity mirror, FP标准具的腔镜; EYDFA, 铒镱共掺光纤放大器; M1, 平面反射镜; BS1—3, 光学分束器; CR1—6, 角锥棱镜; PD1和PD2, 光电探测器; SRM, 半反半透薄膜; RIO, 单频激光器; XL-80, 雷尼绍干涉仪; Scope, 示波器; 黄色线, 单模光纤; 深蓝色线, 电学线缆; 红色线, 光频梳出射的激光光束; 浅蓝色线, RIO单频激光器出射的激光光束; 绿色线, 雷尼绍干涉仪出射的激光光束)

    Fig. 9.  Schematic of cross-correlation ranging based on repetition rate multiplying optical frequency comb. OFC, optical frequency comb; CL1—3, collimator; Lens1 and Lens2, mode matching lens; EYDFA, erbium ytterbium doped fiber amplifier; M1, plane mirror; BS1—3, beam splitter; CR1—6, retroreflector; PD1 and PD2, photodetector; SRM, semi-reflective film; RIO, RIO single wavelength laser; XL-80, Renishaw commercial interferometer; Scope, oscilloscope; yellow line, single-mode fiber; dark bule line, the electrical cable; red line, the laser beam emitted by the optical frequency comb; light blue line, the laser beam emitted by the RIO single wavelength laser; green line, the laser beam emitted by the Renishaw interferometer.

    图 10  光频梳经过FP标准具前后的光谱和射频谱 (a) 未经FP标准具的光谱; (b) 经过FP标准具后的光谱; (c) 未经FP标准具的射频谱; (d) 经过FP标准具后的射频谱.

    Fig. 10.  Optical spectrum and the radio frequency spectrum of the optical frequency comb before and after passing through the FP cavity: (a) Optical spectrum before FP cavity; (b) optical spectrum after FP cavity; (c) radio frequency spectrum before FP cavity; (d) radio frequency spectrum after FP cavity.

    图 11  重频倍增光频梳互相关干涉信号 (a) 仿真结果; (b) 实验结果; (c)多脉冲序列干涉图样

    Fig. 11.  Cross-correlation interference signal with a repetition rate multiplication frequency comb: (a) Simulation result; (b) experimental result; (c) multi-pulse train interference pattern.

    图 12  重频倍增光频梳脉冲互相关测距图样 (a)互相关干涉信号; (b) 互相关干涉信号峰值附近位置放大图样; (c) 包络峰值信号提取

    Fig. 12.  Cross correlation pattern based on repetition rate multiplying frequency comb: (a) Cross correlation signal; (b) magnified view of the horizontal axis near the envelope peak for (a); (c) extracted envelope and the Gaussian fitting results.

    图 13  长度比对实验结果(红色圆圈表示五次测量结果的平均值; 误差棒表示测量结果的标准差)

    Fig. 13.  Length comparison experiment result. The red circle represents the average result of five repeated measurements. Error bar indicates the standard deviation of the measurement result.

  • [1]

    Gao W, Kim S W, Bosse H, Haitjema H, Chen Y L, Lu X D, Knapp W, Weckenmann, Estler W T, Kunzmann H A 2015 CIRP Annals – Manuf. Techn. 64 773Google Scholar

    [2]

    Schmitt R H, Peterek M, Morse E, Knapp W, Galetto M, Härtig F, Goch G, Ben H, Forbes A 2016 CIRP Annals-Manuf. Techn. 65 643Google Scholar

    [3]

    Abbott B P, Abbott R, Abbott T D, Zweizig J 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [4]

    Pellegrini S, Buller G S, Smith J M, Wallace A M, Cova S 2000 Meas. Sci. Technol. 11 712Google Scholar

    [5]

    Bobroff N 1993 Meas. Sci. Technol. 4 907Google Scholar

    [6]

    Falaggis K, Towers D P, Towers C E 2009 Opt. Lett. 34 950Google Scholar

    [7]

    Lu S, Lee C 2002 Meas. Sci. Technol. 13 1382Google Scholar

    [8]

    John D, Ben H, Andrew J L, Andrew J L, Armin J H R, Matthew S W 2014 Opt. Express 22 24869Google Scholar

    [9]

    Kim S W 2009 Nat. Photonics 3 313Google Scholar

    [10]

    Diddams S A, Vahala K, Udem T 2020 Science 369 267Google Scholar

    [11]

    Baumann E, Giorgetta F R, Coddington I, Sinclair L C, Knabe K, Swann W C, Newbury N R 2013 Opt. Lett. 38 2026Google Scholar

    [12]

    Wang G C, Jang Y S, Hyun S, Chun B J, Kang H J, Yan S H, Kim S W, Kim Y J 2015 Opt. Express 23 9121Google Scholar

    [13]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar

    [14]

    张晓声, 易旺民, 胡明皓, 杨再华, 吴冠豪 2016 物理学报 65 080602Google Scholar

    Zhang X S, Yi W M, Hu M H, Yang Z H, Wu G H 2016 Acta Phys. Sin. 65 080602Google Scholar

    [15]

    Joo K N, Kim S W 2006 Opt. Express 14 5954Google Scholar

    [16]

    Lesundak A, Voigt D, Cip O, Van den Berg S A 2017 Opt. Express 25 32570Google Scholar

    [17]

    Ye J 2004 Opt. Lett. 29 1153Google Scholar

    [18]

    Nakajima Y, Minoshima K 2015 Opt. Express 23 25979Google Scholar

    [19]

    Wu G H, Zhang F M, Liu T L, Balling P, Li J S, Qu X H 2016 Opt. Lett. 41 2366Google Scholar

    [20]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351Google Scholar

    [21]

    夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双 2021 物理学报 70 180601Google Scholar

    Xia W Z, Liu Y, He M Z, Cao S Y, Yang W L, Zhang F M, Miao D J, Li J S 2021 Acta Phys. Sin. 70 180601Google Scholar

    [22]

    赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民 2020 物理学报 69 090601Google Scholar

    Zhao X Y, Qu X H, Chen J W, Zheng J H, Wang J D, Zhang F M 2020 Acta Phys. Sin. 69 090601Google Scholar

    [23]

    Suh M G, Vahala K J 2018 Science 359 6378Google Scholar

    [24]

    Chen J, Sickler J W, Fendel P, Ippen E P, Kärtner F X, Wilken T, Holzwarth R, Hänsch T W 2008 Opt. Lett. 33 959Google Scholar

    [25]

    Haboucha A, Zhang W, Li T, Lours M, Luiten A N, Coq Y L, Santarelli G 2011 Opt. Lett. 36 3654Google Scholar

    [26]

    Lee J, Kim S W, Kim Y J 2015 Opt. Express 23 10117Google Scholar

    [27]

    Zeitouny M, Cui M, Bhattacharya N 2010 Phys. Rev. A 82 23808Google Scholar

    [28]

    Bonsch G, Potulski E 1998 Metrologia 35 133Google Scholar

  • [1] 赵瀚宇, 曹士英, 戴少阳, 杨涛, 左娅妮, 胡明列. 基于光谱增强技术实现对532 nm波长激光频率标定. 物理学报, 2024, 73(9): 094204. doi: 10.7498/aps.73.20240106
    [2] 周强, 吴腾飞, 曾周末, 邾继贵. 基于双向吸收光谱精准标定的光频扫描干涉绝对测距. 物理学报, 2024, 73(17): 170601. doi: 10.7498/aps.73.20240840
    [3] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [4] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [5] 丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军. 基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法. 物理学报, 2022, 71(14): 144203. doi: 10.7498/aps.71.20220147
    [6] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [7] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [8] 郑立, 刘寒, 汪会波, 王阁阳, 蒋建旺, 韩海年, 朱江峰, 魏志义. 极紫外飞秒光学频率梳的产生与研究进展. 物理学报, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [9] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [10] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法. 物理学报, 2019, 68(19): 190602. doi: 10.7498/aps.68.20190836
    [11] 张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩. 光频链接的双光梳气体吸收光谱测量. 物理学报, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [12] 武跃龙, 李睿, 芮扬, 姜海峰, 武海斌. 6Li原子跃迁频率和超精细分裂的精密测量. 物理学报, 2018, 67(16): 163201. doi: 10.7498/aps.67.20181021
    [13] 彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳. 飞秒脉冲非对称互相关绝对测距. 物理学报, 2018, 67(21): 210601. doi: 10.7498/aps.67.20181274
    [14] 刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华. 光学频率梳啁啾干涉实现绝对距离测量. 物理学报, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [15] 孟祥松, 张福民, 曲兴华. 基于重采样技术的调频连续波激光绝对测距高精度及快速测量方法研究. 物理学报, 2015, 64(23): 230601. doi: 10.7498/aps.64.230601
    [16] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [17] 时光, 张福民, 曲兴华, 孟祥松. 高分辨率调频连续波激光绝对测距研究. 物理学报, 2014, 63(18): 184209. doi: 10.7498/aps.63.184209
    [18] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法. 物理学报, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [19] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [20] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
计量
  • 文章访问数:  6353
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 修回日期:  2022-01-04
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-05-05

/

返回文章
返回