-
利用法布里-珀罗标准具对光纤光频梳的重复频率(重频)进行倍增, 使光频梳重频从最初的250 MHz提升至10 GHz, 对应的脉冲间距从1200 mm缩减至30 mm, 极大地降低了脉冲互相关测距方法对参考臂扫描范围的需求. 建立了重频倍增光频梳的时域互相关干涉信号数学模型, 通过数值模拟分析了光源参数(重频、起始偏移频率)和法布里-珀罗标准具参数(色散、腔长、中心波长)对滤出光谱形状以及互相关信号的影响. 在实验中, 使用重频倍增后的光频梳进行脉冲互相关干涉绝对测距, 与参考干涉仪对比, 在210 mm范围内获得优于4 μm的测距精度.In this paper, the Fabry-Perot etalon is used to multiply the repetition rate of the fiber optical frequency comb. The repetition rate is amplified from 250 MHz to 10 GHz, and the corresponding pulse interval is reduced from 1200 mm to 30 mm. For the pulse cross correlation ranging method, the repetition rate multiplication can greatly reduce the length requirement of the scanning reference arm. We analyze in detail the principle of cross correlation interferometry based on repetition rate multiplication frequency comb. A numerical mode of the function is comprehensively established. The basic parameters of optical source and Fabry-Perot cavity for the influence of filtered optical spectrum and cross correlation fringe are analyzed through the numerical simulation. The multiplied frequency comb is utilized for absolute ranging with the help of a pulse cross correlation method. By comparison, our result differs from the result obtained by a conventional counting interferometer only by 4 μm for distances up to 210 mm.
-
Keywords:
- optical frequency comb /
- repetition rate multiplication /
- absolute distance measurement /
- cross correlation interferometry
[1] Gao W, Kim S W, Bosse H, Haitjema H, Chen Y L, Lu X D, Knapp W, Weckenmann, Estler W T, Kunzmann H A 2015 CIRP Annals – Manuf. Techn. 64 773Google Scholar
[2] Schmitt R H, Peterek M, Morse E, Knapp W, Galetto M, Härtig F, Goch G, Ben H, Forbes A 2016 CIRP Annals-Manuf. Techn. 65 643Google Scholar
[3] Abbott B P, Abbott R, Abbott T D, Zweizig J 2016 Phys. Rev. Lett. 116 061102Google Scholar
[4] Pellegrini S, Buller G S, Smith J M, Wallace A M, Cova S 2000 Meas. Sci. Technol. 11 712Google Scholar
[5] Bobroff N 1993 Meas. Sci. Technol. 4 907Google Scholar
[6] Falaggis K, Towers D P, Towers C E 2009 Opt. Lett. 34 950Google Scholar
[7] Lu S, Lee C 2002 Meas. Sci. Technol. 13 1382Google Scholar
[8] John D, Ben H, Andrew J L, Andrew J L, Armin J H R, Matthew S W 2014 Opt. Express 22 24869Google Scholar
[9] Kim S W 2009 Nat. Photonics 3 313Google Scholar
[10] Diddams S A, Vahala K, Udem T 2020 Science 369 267Google Scholar
[11] Baumann E, Giorgetta F R, Coddington I, Sinclair L C, Knabe K, Swann W C, Newbury N R 2013 Opt. Lett. 38 2026Google Scholar
[12] Wang G C, Jang Y S, Hyun S, Chun B J, Kang H J, Yan S H, Kim S W, Kim Y J 2015 Opt. Express 23 9121Google Scholar
[13] Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar
[14] 张晓声, 易旺民, 胡明皓, 杨再华, 吴冠豪 2016 物理学报 65 080602Google Scholar
Zhang X S, Yi W M, Hu M H, Yang Z H, Wu G H 2016 Acta Phys. Sin. 65 080602Google Scholar
[15] Joo K N, Kim S W 2006 Opt. Express 14 5954Google Scholar
[16] Lesundak A, Voigt D, Cip O, Van den Berg S A 2017 Opt. Express 25 32570Google Scholar
[17] Ye J 2004 Opt. Lett. 29 1153Google Scholar
[18] Nakajima Y, Minoshima K 2015 Opt. Express 23 25979Google Scholar
[19] Wu G H, Zhang F M, Liu T L, Balling P, Li J S, Qu X H 2016 Opt. Lett. 41 2366Google Scholar
[20] Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351Google Scholar
[21] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双 2021 物理学报 70 180601Google Scholar
Xia W Z, Liu Y, He M Z, Cao S Y, Yang W L, Zhang F M, Miao D J, Li J S 2021 Acta Phys. Sin. 70 180601Google Scholar
[22] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民 2020 物理学报 69 090601Google Scholar
Zhao X Y, Qu X H, Chen J W, Zheng J H, Wang J D, Zhang F M 2020 Acta Phys. Sin. 69 090601Google Scholar
[23] Suh M G, Vahala K J 2018 Science 359 6378Google Scholar
[24] Chen J, Sickler J W, Fendel P, Ippen E P, Kärtner F X, Wilken T, Holzwarth R, Hänsch T W 2008 Opt. Lett. 33 959Google Scholar
[25] Haboucha A, Zhang W, Li T, Lours M, Luiten A N, Coq Y L, Santarelli G 2011 Opt. Lett. 36 3654Google Scholar
[26] Lee J, Kim S W, Kim Y J 2015 Opt. Express 23 10117Google Scholar
[27] Zeitouny M, Cui M, Bhattacharya N 2010 Phys. Rev. A 82 23808Google Scholar
[28] Bonsch G, Potulski E 1998 Metrologia 35 133Google Scholar
-
图 1 脉冲互相关测距原理示意图(OFC, 光频梳; BS, 分束镜; Mr, 参考镜; Mt, 目标镜; M0, 零点参考镜; PD, 光电探测器; Scope, 示波器)
Fig. 1. Schematic of the pulse cross-correlation ranging principle. OFC, optical frequency comb; BS, beam splitter; Mr, reference mirror; M0, zero position mirror; Mt, target mirror; PD, photodetector; Scope, oscilloscope.
图 3 光频梳重频对透射光谱的影响 (a) 理想透射谱; (c) fr = 250.001 MHz时的透射谱; (e) fr = 250.1 MHz时的透射谱; (b), (d), (f) 分别为 (a), (c), (e)的局部放大图
Fig. 3. Influence of frequency comb repetition rate on transmission spectrum: (a) Ideal transmission spectrum; (c) the transmission spectrum at fr = 250.001 MHz; (e) the transmission spectrum at fr = 250.1 MHz; (b), (d), (f) partial enlarged views of (a), (c), (e).
图 5 FP标准具参数对透射光谱的影响 (a) 不同腔长偏差; (c) 不同群延迟色散, (e) 不同中心波长; (b), (d), (f) 分别为(a), (c), (e)的局部放大图
Fig. 5. Influence of FP etalon parameter on the transmission spectrum: (a) Different cavity length deviations; (c) different group delay dispersions; (e) different center wavelengths; (b), (d), (f) partial enlarged views of (a), (c), (e).
图 7 光源参数对互相关信号的影响 (a) 不同重频偏差下的干涉条纹; (c) 不同偏频偏差下的干涉条纹; (b), (d) 分别为(a), (c)的局部放大图
Fig. 7. Influence of light source parameter on cross-correlation signal: (a) Interference fringe under different repetition rate; (c) interference fringe under different offset frequency; (b), (d) partial enlarged views of (a), (c).
图 8 FP标准具参数对互相关信号的影响 (a) 不同群延迟色散下的干涉条纹; (c) 不同精细度下的干涉条纹; (b), (d) 分别为(a), (c)的局部放大图
Fig. 8. Influence of FP etalon parameter on cross-correlation signal: (a) Interference fringe under different group delay dispersion; (c) interference fringe under different finesse; (b), (d) partial enlarged views of (a), (c).
图 9 重频倍增光频梳时域互相关绝对测距原理示意图(Frequency comb, 光频梳; CL1—3, 准直器; Lens1和Lens2, 模式匹配透镜; Cavity mirror, FP标准具的腔镜; EYDFA, 铒镱共掺光纤放大器; M1, 平面反射镜; BS1—3, 光学分束器; CR1—6, 角锥棱镜; PD1和PD2, 光电探测器; SRM, 半反半透薄膜; RIO, 单频激光器; XL-80, 雷尼绍干涉仪; Scope, 示波器; 黄色线, 单模光纤; 深蓝色线, 电学线缆; 红色线, 光频梳出射的激光光束; 浅蓝色线, RIO单频激光器出射的激光光束; 绿色线, 雷尼绍干涉仪出射的激光光束)
Fig. 9. Schematic of cross-correlation ranging based on repetition rate multiplying optical frequency comb. OFC, optical frequency comb; CL1—3, collimator; Lens1 and Lens2, mode matching lens; EYDFA, erbium ytterbium doped fiber amplifier; M1, plane mirror; BS1—3, beam splitter; CR1—6, retroreflector; PD1 and PD2, photodetector; SRM, semi-reflective film; RIO, RIO single wavelength laser; XL-80, Renishaw commercial interferometer; Scope, oscilloscope; yellow line, single-mode fiber; dark bule line, the electrical cable; red line, the laser beam emitted by the optical frequency comb; light blue line, the laser beam emitted by the RIO single wavelength laser; green line, the laser beam emitted by the Renishaw interferometer.
图 10 光频梳经过FP标准具前后的光谱和射频谱 (a) 未经FP标准具的光谱; (b) 经过FP标准具后的光谱; (c) 未经FP标准具的射频谱; (d) 经过FP标准具后的射频谱.
Fig. 10. Optical spectrum and the radio frequency spectrum of the optical frequency comb before and after passing through the FP cavity: (a) Optical spectrum before FP cavity; (b) optical spectrum after FP cavity; (c) radio frequency spectrum before FP cavity; (d) radio frequency spectrum after FP cavity.
图 12 重频倍增光频梳脉冲互相关测距图样 (a)互相关干涉信号; (b) 互相关干涉信号峰值附近位置放大图样; (c) 包络峰值信号提取
Fig. 12. Cross correlation pattern based on repetition rate multiplying frequency comb: (a) Cross correlation signal; (b) magnified view of the horizontal axis near the envelope peak for (a); (c) extracted envelope and the Gaussian fitting results.
-
[1] Gao W, Kim S W, Bosse H, Haitjema H, Chen Y L, Lu X D, Knapp W, Weckenmann, Estler W T, Kunzmann H A 2015 CIRP Annals – Manuf. Techn. 64 773Google Scholar
[2] Schmitt R H, Peterek M, Morse E, Knapp W, Galetto M, Härtig F, Goch G, Ben H, Forbes A 2016 CIRP Annals-Manuf. Techn. 65 643Google Scholar
[3] Abbott B P, Abbott R, Abbott T D, Zweizig J 2016 Phys. Rev. Lett. 116 061102Google Scholar
[4] Pellegrini S, Buller G S, Smith J M, Wallace A M, Cova S 2000 Meas. Sci. Technol. 11 712Google Scholar
[5] Bobroff N 1993 Meas. Sci. Technol. 4 907Google Scholar
[6] Falaggis K, Towers D P, Towers C E 2009 Opt. Lett. 34 950Google Scholar
[7] Lu S, Lee C 2002 Meas. Sci. Technol. 13 1382Google Scholar
[8] John D, Ben H, Andrew J L, Andrew J L, Armin J H R, Matthew S W 2014 Opt. Express 22 24869Google Scholar
[9] Kim S W 2009 Nat. Photonics 3 313Google Scholar
[10] Diddams S A, Vahala K, Udem T 2020 Science 369 267Google Scholar
[11] Baumann E, Giorgetta F R, Coddington I, Sinclair L C, Knabe K, Swann W C, Newbury N R 2013 Opt. Lett. 38 2026Google Scholar
[12] Wang G C, Jang Y S, Hyun S, Chun B J, Kang H J, Yan S H, Kim S W, Kim Y J 2015 Opt. Express 23 9121Google Scholar
[13] Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar
[14] 张晓声, 易旺民, 胡明皓, 杨再华, 吴冠豪 2016 物理学报 65 080602Google Scholar
Zhang X S, Yi W M, Hu M H, Yang Z H, Wu G H 2016 Acta Phys. Sin. 65 080602Google Scholar
[15] Joo K N, Kim S W 2006 Opt. Express 14 5954Google Scholar
[16] Lesundak A, Voigt D, Cip O, Van den Berg S A 2017 Opt. Express 25 32570Google Scholar
[17] Ye J 2004 Opt. Lett. 29 1153Google Scholar
[18] Nakajima Y, Minoshima K 2015 Opt. Express 23 25979Google Scholar
[19] Wu G H, Zhang F M, Liu T L, Balling P, Li J S, Qu X H 2016 Opt. Lett. 41 2366Google Scholar
[20] Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351Google Scholar
[21] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双 2021 物理学报 70 180601Google Scholar
Xia W Z, Liu Y, He M Z, Cao S Y, Yang W L, Zhang F M, Miao D J, Li J S 2021 Acta Phys. Sin. 70 180601Google Scholar
[22] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民 2020 物理学报 69 090601Google Scholar
Zhao X Y, Qu X H, Chen J W, Zheng J H, Wang J D, Zhang F M 2020 Acta Phys. Sin. 69 090601Google Scholar
[23] Suh M G, Vahala K J 2018 Science 359 6378Google Scholar
[24] Chen J, Sickler J W, Fendel P, Ippen E P, Kärtner F X, Wilken T, Holzwarth R, Hänsch T W 2008 Opt. Lett. 33 959Google Scholar
[25] Haboucha A, Zhang W, Li T, Lours M, Luiten A N, Coq Y L, Santarelli G 2011 Opt. Lett. 36 3654Google Scholar
[26] Lee J, Kim S W, Kim Y J 2015 Opt. Express 23 10117Google Scholar
[27] Zeitouny M, Cui M, Bhattacharya N 2010 Phys. Rev. A 82 23808Google Scholar
[28] Bonsch G, Potulski E 1998 Metrologia 35 133Google Scholar
计量
- 文章访问数: 6353
- PDF下载量: 120
- 被引次数: 0