搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双光梳非线性异步光学采样测距中关键参数的数值分析

夏文泽 刘洋 赫明钊 曹士英 杨伟雷 张福民 缪东晶 李建双

引用本文:
Citation:

双光梳非线性异步光学采样测距中关键参数的数值分析

夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双

Numerical analyses of key parameters of nonlinear asynchronous optical sampling using dual-comb system

Xia Wen-Ze, Liu Yang, He Ming-Zhao, Cao Shi-Ying, Yang Wei-Lei, Zhang Fu-Min, Miao Dong-Jing, Li Jian-Shuang
PDF
HTML
导出引用
  • 双光梳异步光学采样的绝对测距方法具有量程大、测速快和精度高等特点, 在几何量精密测量领域具有广泛的应用前景. 特别地, 结合异步光学采样和非线性强度互相关的倍频信号时域探测方法, 可以有效避免测量过程中载波包络偏移频率对测距精度的影响. 本文针对双光梳非线性异步光学采样绝对测距系统, 对影响其测距精度的理论模型和关键参数进行数值模拟研究. 对双光梳异步光学采样的理论模型进行分析后, 分别研究了双光梳光源参数(重复频率和重复频率差)、倍频信号精细拟合及脉冲时间抖动对测距精度的影响. 数值分析结果表明: 选择合理的重复频率和重复频率差有利于提升测距精度, 此外适当提高测量速度可以有效降低脉冲时间抖动对测距误差的影响.
    Absolute distance measurement based on the asynchronous optical sampling with using a dual-comb system has the characteristics of large range, fast measurement speed, and high accuracy, which has wide application prospects in the field of precision measurement of geometric quantities, such as the space technology, equipment manufacturing, etc. Recently, the invention of the femtosecond frequency comb is a milestone in the field of precision length measurement. Many approaches to the absolute distance measurement have been proposed. Among them, the dual-comb system with asynchronous optical sampling can realize a length measurement with fast speed, high accuracy, and long range. Especially, the temporal method combining the asynchronous optical sampling with nonlinear intensity cross-correlation can effectively avoid influencing of the carrier-envelope offset frequency on the ranging accuracy in the measurement process. The time-of-flight information can be obtained by the time interval between the reference pattern and the measurement pattern. Even so, the selection of the repetition rate and the difference of repetition rates will strongly influence the temporal sampling interval of the measurements. Therefore, the theoretical model and key parameters for the ranging are numerically studied for the non-linear asynchronous optical sampling by using a dual-comb system of absolute distance measurement. After analysis, the effects of source parameters (repetition frequency and repetition frequency difference), fine fitting of second harmonic signal, and timing jitter on ranging accuracy are studied respectively. The numerical analysis results show that the method of choosing a reasonable repetition frequency and repetition frequency difference is beneficial to the improvement of the ranging accuracy. When the sampling interval of the dual-comb system is a constant, the time value between the reference and measurement patterns can be obtained by the interpolation method of fine curve fitting, and it will further improve the ranging accuracy. In addition, the time jitter of the femtosecond pulses is also an important factor that can affect the ranging accuracy. By changing the difference in the repetition rate, the measurement speed can also be improved. After that, the cumulative ranging error caused by time jitter can be reduced. Therefore, the appropriate increasing of measurement speed can effectively reduce the influence of timing jitter on ranging.
      通信作者: 刘洋, liuyang1@nim.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFF0200405, 2019YFB2006103)资助的课题
      Corresponding author: Liu Yang, liuyang1@nim.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFF0200405, 2019YFB2006103)
    [1]

    Schmitt R H, Peterek M, Morse E, Knapp W, Galetto M, Härtig F, Goch G, Hughes B, Forbes A, Estler W T 2016 CIRP Ann. -Manuf. Techn. 65 643Google Scholar

    [2]

    谭久彬 2020 中国工业和信息化 6 18Google Scholar

    Tan J B 2020 China Ind. Inf. Technol. 6 18Google Scholar

    [3]

    郑联语, 朱绪胜, 姜丽萍 2013 航空制造技术 7 38Google Scholar

    Zheng L Y, Zhu X S, Jiang L P 2013 Aeron. Manuf. Technol. 7 38Google Scholar

    [4]

    华卿, 周维虎, 许艳 2012 计测技术 32 1

    Hua Q, Zhou W H, Xu Y 2012 Metrol. Meas. Technol. 32 1

    [5]

    Hansch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [6]

    Hall J L 2006 Rev. Mod. Phys. 78 1279Google Scholar

    [7]

    张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩 2018 物理学报 67 090701Google Scholar

    Zhang W P, Yang H L, Chen X Y, Yu H Y, Li Y 2018 Acta Phys. Sin. 67 090701Google Scholar

    [8]

    Zhang R, Zhu Z, Wu G 2019 Opt. Express 27 34269Google Scholar

    [9]

    Liu Y, Lin J, Yang L, Wang Y, Zhu J 2018 Opt. Express 26 26618Google Scholar

    [10]

    王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞 2013 物理学报 62 070601Google Scholar

    Wang G C, Yan S H, Yang J, Lin C B, Yang D X, Zou P F 2013 Acta Phys. Sin. 62 070601Google Scholar

    [11]

    邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 物理学报 62 170603Google Scholar

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603Google Scholar

    [12]

    Minoshima K, Matsumoto H 2000 Appl. Optics 39 5512Google Scholar

    [13]

    Ye J 2004 Opt. Lett. 29 1153Google Scholar

    [14]

    Nam J K, Woo K S 2006 Opt. Express 14 5954

    [15]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photonics 4 716Google Scholar

    [16]

    吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华 2014 物理学报 63 100601Google Scholar

    Wu H Z, Cao S Y, Zhang F M, Xing S J, Qu X H 2014 Acta Phys. Sin. 63 100601Google Scholar

    [17]

    刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华 2016 物理学报 65 020601Google Scholar

    Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 65 020601Google Scholar

    [18]

    王国超, 李星辉, 颜树华, 谭立龙, 管文良 2021 物理学报 70 040601Google Scholar

    Wang G C, Li X H, Yan S H, Tan L L, Guan W L 2021 Acta Phys. Sin. 70 040601Google Scholar

    [19]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351Google Scholar

    [20]

    Liu T A, Newbury N R, Coddington I 2011 Opt. Express 19 18501Google Scholar

    [21]

    Lee J, Han S, Lee K, Bae E, Kim S, Lee S, Kim S W, Kim Y J 2013 Meas. Sci. Technol. 24 45201Google Scholar

    [22]

    Zhang H Y, Wei H Y, Wu X J, Yang H L, Li Y 2014 Opt. Express 22 6597Google Scholar

    [23]

    Shi H S, Song Y J, Liang F, Xu L M, Hu M L, Wang C Y 2015 Opt. Express 23 14057Google Scholar

    [24]

    Lin B, Zhao X, He M, Pan Y, Chen J, Cao S, Lin Y, Wang Q, Zheng Z, Fang Z 2017 IEEE Photonics J 9 1Google Scholar

    [25]

    Li Y, Cai Y, Li R, Shi H, Tian H, He M, Song Y, Hu M 2019 Chin. Opt. Lett. 17 091202Google Scholar

    [26]

    Shiraki E, Nishizawa N 2011 Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim Sydney, Australia, August 28−September 1, 2011 p894

    [27]

    Lazaridis P, Debarge G, Gallion P 1995 Opt. Lett. 20 1160Google Scholar

    [28]

    Paschotta R 2004 Appl. Phys. B 79 153

    [29]

    Wang Y, Tian H, Ma Y, Song Y, Zhang Z 2018 Opt. Lett. 43 4382Google Scholar

    [30]

    Benedick A J, Fujimoto J G, Kärtner F X 2012 Nat. Photonics 6 97Google Scholar

  • 图 1  强度互相关的双光梳非线性异步光学采样测量原理示意图

    Fig. 1.  Schematic of dual-comb nonlinear asynchronous optical sampling for distance measurement based on intensity cross-correlation method.

    图 2  非线性异步光学采样的时域强度相干过程

    Fig. 2.  Time domain intensity coherence process of nonlinear asynchronous optical sampling.

    图 3  双光梳强度互相关仿真图

    Fig. 3.  Simulated pattern of the dual-comb intensity coherence.

    图 4  重频差对仿真测距精度的影响

    Fig. 4.  Effect of repetition frequency difference on the simulated ranging accuracy.

    图 5  重频差对仿真测距精度的影响及其现象解释 (a)微调重频差对仿真测距精度的影响; (b)脉冲重合示意图

    Fig. 5.  Effect of repetition frequency difference on the simulated ranging accuracy and its phenomenon explanation; (a) Effect of fine-tuning the repetition frequency difference on the simulated ranging accuracy; (b) schematic of pulse overlap.

    图 6  重频差对不同重复频率仿真测距精度的影响

    Fig. 6.  Effect of repetition frequency difference on the simulated ranging accuracy with different repetition frequency.

    图 7  微调重复频率对仿真测距精度的影响

    Fig. 7.  Effect of fine-tuning the repetition frequency on the simulated ranging accuracy.

    图 8  理想情况下信号拟合对仿真测距精度的影响

    Fig. 8.  Effect of signal fitting on simulated ranging accuracy under ideal conditions.

    图 9  脉冲的时间抖动和倍频信号的时间误差

    Fig. 9.  Timing jitter of pulse and time error of second harmonic signal.

    图 10  时间抖动在不同测距速度下对仿真测距精度的影响

    Fig. 10.  Effect of timing jitter on simulated ranging accuracy under different ranging speeds.

    表 1  重频差、测距精度与重合因子的关系

    Table 1.  Relationships among repetition frequency difference, ranging accuracy and overlap factor.

    重频差/Hz测量误差/μm重合因子n
    4981.29.1630.5095
    4983.24.4970.7591
    4990.80.2630.9859
    4999.40.0520.9973
    5001.27.3430.3919
    5005.40.1120.0059
    下载: 导出CSV

    表 2  重复频率、测距精度与重合因子的关系

    Table 2.  Relationships among repetition frequency difference, ranging accuracy and overlap factor.

    重复频率/MHz测量误差/μm重合因子n
    199.9932750.0030.0002
    199.9951259.2540.4938
    199.9966650.1830.9048
    199.9970200.0090.9995
    200.0016654.4820.2390
    200.0073204.7240.7482
    下载: 导出CSV

    表 3  不同时间抖动对仿真测距精度的影响

    Table 3.  Effect of different timing jitter on simulated ranging accuracy

    时间抖动/fs测量周期/ms最大标准差/μm
    100.50071.252
    0.20048.116
    0.12529.148
    10.5006.296
    0.2004.517
    0.1252.431
    0.0130.5000.069
    0.2000.039
    0.1250.023
    下载: 导出CSV
  • [1]

    Schmitt R H, Peterek M, Morse E, Knapp W, Galetto M, Härtig F, Goch G, Hughes B, Forbes A, Estler W T 2016 CIRP Ann. -Manuf. Techn. 65 643Google Scholar

    [2]

    谭久彬 2020 中国工业和信息化 6 18Google Scholar

    Tan J B 2020 China Ind. Inf. Technol. 6 18Google Scholar

    [3]

    郑联语, 朱绪胜, 姜丽萍 2013 航空制造技术 7 38Google Scholar

    Zheng L Y, Zhu X S, Jiang L P 2013 Aeron. Manuf. Technol. 7 38Google Scholar

    [4]

    华卿, 周维虎, 许艳 2012 计测技术 32 1

    Hua Q, Zhou W H, Xu Y 2012 Metrol. Meas. Technol. 32 1

    [5]

    Hansch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [6]

    Hall J L 2006 Rev. Mod. Phys. 78 1279Google Scholar

    [7]

    张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩 2018 物理学报 67 090701Google Scholar

    Zhang W P, Yang H L, Chen X Y, Yu H Y, Li Y 2018 Acta Phys. Sin. 67 090701Google Scholar

    [8]

    Zhang R, Zhu Z, Wu G 2019 Opt. Express 27 34269Google Scholar

    [9]

    Liu Y, Lin J, Yang L, Wang Y, Zhu J 2018 Opt. Express 26 26618Google Scholar

    [10]

    王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞 2013 物理学报 62 070601Google Scholar

    Wang G C, Yan S H, Yang J, Lin C B, Yang D X, Zou P F 2013 Acta Phys. Sin. 62 070601Google Scholar

    [11]

    邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 物理学报 62 170603Google Scholar

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603Google Scholar

    [12]

    Minoshima K, Matsumoto H 2000 Appl. Optics 39 5512Google Scholar

    [13]

    Ye J 2004 Opt. Lett. 29 1153Google Scholar

    [14]

    Nam J K, Woo K S 2006 Opt. Express 14 5954

    [15]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photonics 4 716Google Scholar

    [16]

    吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华 2014 物理学报 63 100601Google Scholar

    Wu H Z, Cao S Y, Zhang F M, Xing S J, Qu X H 2014 Acta Phys. Sin. 63 100601Google Scholar

    [17]

    刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华 2016 物理学报 65 020601Google Scholar

    Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 65 020601Google Scholar

    [18]

    王国超, 李星辉, 颜树华, 谭立龙, 管文良 2021 物理学报 70 040601Google Scholar

    Wang G C, Li X H, Yan S H, Tan L L, Guan W L 2021 Acta Phys. Sin. 70 040601Google Scholar

    [19]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351Google Scholar

    [20]

    Liu T A, Newbury N R, Coddington I 2011 Opt. Express 19 18501Google Scholar

    [21]

    Lee J, Han S, Lee K, Bae E, Kim S, Lee S, Kim S W, Kim Y J 2013 Meas. Sci. Technol. 24 45201Google Scholar

    [22]

    Zhang H Y, Wei H Y, Wu X J, Yang H L, Li Y 2014 Opt. Express 22 6597Google Scholar

    [23]

    Shi H S, Song Y J, Liang F, Xu L M, Hu M L, Wang C Y 2015 Opt. Express 23 14057Google Scholar

    [24]

    Lin B, Zhao X, He M, Pan Y, Chen J, Cao S, Lin Y, Wang Q, Zheng Z, Fang Z 2017 IEEE Photonics J 9 1Google Scholar

    [25]

    Li Y, Cai Y, Li R, Shi H, Tian H, He M, Song Y, Hu M 2019 Chin. Opt. Lett. 17 091202Google Scholar

    [26]

    Shiraki E, Nishizawa N 2011 Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim Sydney, Australia, August 28−September 1, 2011 p894

    [27]

    Lazaridis P, Debarge G, Gallion P 1995 Opt. Lett. 20 1160Google Scholar

    [28]

    Paschotta R 2004 Appl. Phys. B 79 153

    [29]

    Wang Y, Tian H, Ma Y, Song Y, Zhang Z 2018 Opt. Lett. 43 4382Google Scholar

    [30]

    Benedick A J, Fujimoto J G, Kärtner F X 2012 Nat. Photonics 6 97Google Scholar

  • [1] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [2] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [3] 程秋振, 黄引, 李玉辉, 张凯, 冼国裕, 刘鹤元, 车冰玉, 潘禄禄, 韩烨超, 祝轲, 齐琦, 谢耀锋, 潘金波, 陈海龙, 李永峰, 郭辉, 杨海涛, 高鸿钧. 准一维层状半导体Nb4P2S21单晶的面内光学各向异性. 物理学报, 2023, 72(21): 218102. doi: 10.7498/aps.72.20231539
    [4] 刘远峰, 李斌成, 赵斌兴, 刘红. SiC光学材料亚表面缺陷的光热辐射检测. 物理学报, 2023, 72(2): 024208. doi: 10.7498/aps.72.20221303
    [5] 梁艳美, 陆博, 古华光. 利用双慢变量的快慢变量分离分析新脑皮层神经元Wilson模型的复杂电活动. 物理学报, 2022, 71(23): 230502. doi: 10.7498/aps.71.20221416
    [6] 朱栋, 徐晗, 周寅, 吴彬, 程冰, 王凯楠, 陈佩军, 高世腾, 翁堪兴, 王河林, 彭树萍, 乔中坤, 王肖隆, 林强. 基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理. 物理学报, 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [7] 王凯楠, 徐晗, 周寅, 许云鹏, 宋微, 汤鸿志, 王巧薇, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 程冰, 李德钊, 乔中坤, 吴彬, 林强. 基于车载原子重力仪的外场绝对重力快速测绘研究. 物理学报, 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [8] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [9] 扶龙香, 贺少波, 王会海, 孙克辉. 离散忆阻混沌系统的Simulink建模及其动力学特性分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211549
    [10] 姚春霞, 何其利, 张锦, 付天宇, 吴朝, 王山峰, 黄万霞, 袁清习, 刘鹏, 王研, 张凯. 免分析光栅一次曝光相位衬度成像方法. 物理学报, 2021, 70(2): 028701. doi: 10.7498/aps.70.20201170
    [11] 翟泽辉, 郝温静, 刘建丽, 段西亚. 用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量. 物理学报, 2020, 69(18): 184204. doi: 10.7498/aps.69.20200589
    [12] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [13] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
计量
  • 文章访问数:  3936
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 修回日期:  2021-04-27
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回