搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

谐振子势阱中双费米原子光钟的碰撞频移

陈泽锐 刘光存 俞振华

引用本文:
Citation:

谐振子势阱中双费米原子光钟的碰撞频移

陈泽锐, 刘光存, 俞振华

Collision clock shift of two Fermi atoms in harmonic potentials

Chen Ze-Rui, Liu Guang-Cun, Yu Zhen-Hua
PDF
HTML
导出引用
  • 原子钟提供了时间的标准, 但原子间的相互作用往往限制原子钟的精度. 本文理论研究了谐振子势阱中双费米原子光钟由于原子间的短程相互作用而在拉比频谱中引起的碰撞频移. 考虑到原子光钟中短程相互作用一般较弱, 并且晶格光的参数在Lamb-Dicke区间中, 本文近似费米原子的外态不发生改变, 进而推导出原子内态在拉比探测光驱动下满足的运动方程. 微扰求解运动方程, 得到一阶解的解析表达式, 从而得到了拉比频谱的碰撞频移依赖于拉比探测光参数与在原子特定外态中相互作用的表达式. 最后, 利用谐振子势阱中格林函数的解析表达式, 得到了有限温下碰撞频移与原子间相互作用的关系. 研究结果表明, 实验中可以通过精密测量原子光钟的频移获得原子间相互作用的信息.
    Atomic clocks provide the most accurate definition for time. The precision of atomic clock has been improved by many orders of magnitude since the first atomic clock was built. However, the interatomic interaction usually suppress the precision of atomic clock. As a result, it is especially meaningful to study the interaction effect in atomic clock, which is considered to be helpful in improving the precision and accuracy of atomic clock. In order to characterize the collision effect induced clock shift, we theoretically study the collision clock shift in the Rabi spectrum, caused by the short-range interaction between two Fermi atoms in harmonic potential. Given that the short-range interatomic interaction is generally weak, and that the parameters of external lattice laser field are in the Lamb-Dicke regime, we make an approximation that the spatial wave-function of the Fermi atoms does not change, and then derive the motion equation for the internal wave-function under the external Rabi driving field. We solve the equation of motion by the perturbative method, and obtain the solution to first order, and thus derive the expression of the collision clock shift of the Rabi spectrum in terms of the interatomic interaction and the external Rabi driving laser field parameters for specific spatial wave-functions of atoms. Finally, we use the exact expression of the Green’s function in harmonic potential to obtain the averaged clock shift of collision at finite temperatures. Our results relate the atomic interaction with atomic clock shift, and provide a unified description of all partial waves of atomic interaction induced clock shift. Therefore, it becomes much more convenient to study the contributions of different partial waves to atomic clock shift. On the other hand, our results indicate that through precisely measuring the clock shift, the information about the interatomic interactions can also be obtained. In addition, our results for two interacting atoms can inspire the future study of real many-body interacting system which will be the next research topic.
      通信作者: 俞振华, yuzhh5@mail.sysu.edu.cn
    • 基金项目: 广东省重点领域研发计划(批准号: 2019B030330001)和国家自然科学基金(批准号: 11474179, 11722438, 91736103, 12074440)资助的课题
      Corresponding author: Yu Zhen-Hua, yuzhh5@mail.sysu.edu.cn
    • Funds: Project supported by the Key Area Research and Development Program of Guangdong Province, China (Grant No. 2019B030330001) and the National Natural Science Foundation of China (Grant Nos. 11474179, 11722438, 91736103, 12074440)
    [1]

    阮军, 王叶兵, 常宏, 刘涛, 董瑞芳, 张首刚 2015 物理学报 64 160308Google Scholar

    Ruan G, Wang Y B, Chang H, Jiang H F, Liu T, Dong R F, Zhang S G 2015 Acta Phys. Sin. 64 160308Google Scholar

    [2]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [3]

    Blatt S, Thomsen J W, Campbell G K, et al. 2009 Phys. Rev. A 80 052703Google Scholar

    [4]

    Zhu B, Gadway B, Foss-Feig M, Schachenmayer J, Wall M L, Hazzard K R A, Yan B, Moses S A, Covey J P, Jin D S, Ye J, Holland M, Rey A M 2014 Phys. Rev. Lett. 112 070404

    [5]

    Moses S A, Covey J P, Miecnikowski M T, Yan B, Gadway B, Ye J, Jin D S 2015 Science 350 659Google Scholar

    [6]

    Labuhn H, Barredo D, Ravets S, de Léséleuc S, Macrì T, Lahaye T, Browaeys A 2016 Nature 534 667Google Scholar

    [7]

    Aikawa K, Baier S, Frisch A, Mark M, Ravensbergen C, Ferlaino F 2014 Science 345 1484Google Scholar

    [8]

    Burdick N Q, Tang Y, Lev B L 2016 Phys. Rev. X 6 031022

    [9]

    Kadau H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I, Pfau T 2016 Nature 530 194Google Scholar

    [10]

    Heller E J, Falconer I S, Dewar R L 2002 Proceedings of the XVIII International Conference on Atomic Physics: the Expanding Frontier of Atomic Physics Cambridge, Massachusett, USA, July 28–August 2, 2002 p363

    [11]

    Zwierlein M W, Hadzibabic Z, Gupta S, Ketterle W 2003 Phys. Rev. Lett. 91 250404Google Scholar

    [12]

    Campbell G K, Boyd M M, Thomsen J W, et al. 2009 Science 324 360Google Scholar

    [13]

    Harber D M, Lewandowski H J, Mcguirk J M, Cornell E A 2002 Phys. Rev. A 66 053616

    [14]

    Fuchs J N, Gangardt D M, Laloe F 2002 Phys. Rev. Lett. 88 230404Google Scholar

    [15]

    Kadio D, Band Y B 2006 Phys. Rev. A 74 053609

    [16]

    Kurt G 2009 Phys. Rev. Lett. 103 113202Google Scholar

    [17]

    Hazlett E L, Zhang Y, Stites R W, Gibble K, O'Hara K M 2013 Phys. Rev. Lett. 110 160801

    [18]

    Lemke N D, Stecher J V, Sherman J A, Rey A M, Oates C W, Ludlow A D 2011 Phys. Rev. Lett. 107 103902Google Scholar

    [19]

    Rey A M, Martin M J, Swallows M D, Bishof M, Benko C, Blatt S, Stecher J Von, Gorshkov A, Ye J 2012 IEEE International Frequency Control Symposium (FCS): Probing Many-body Spin Interactions with an Optical Lattice Clock Baltimore, Maryland, USA, May 21–24, 2012 p1

    [20]

    Campbell S L, Hutson R B, Marti G E, Goban A, Oppong N D, Mcnally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J 2017 Science 358 90Google Scholar

    [21]

    Liu G C, Huang Y, Cheng Z, Chen Z R, Yu Z H 2020 Phys. Rev. A 101 012504Google Scholar

  • 图 1  光钟频移系数(a) $A\;(\delta_{\rm R}/\varOmega)$与(b) $ B\;(\delta_{\rm R}/\varOmega) $

    Fig. 1.  Coefficient (a) $A\;(\delta_{\rm R}/\varOmega)$ and (b) $ B\;(\delta_{\rm R}/\varOmega) $ for clock shift.

    图 2  系数$ C_\ell $随温度的变化 (a) C1; (b) C2

    Fig. 2.  Coefficient $ C_\ell $ versus temperature: (a) C1; (b) C2.

    图 3  当温度较高时, 系数$ C_\ell $随温度的变化, 这里横轴和纵轴都取对数 (a)线性拟合表达式为$y = 5.54203 x- 3.83918$; (b)线性拟合表达式为$ y = 6.5296 x-0.119146 $

    Fig. 3.  Coefficient $ C_\ell $ versus temperature for higher temperature. The horizontal coordinate and the vertical coordinate are logarithmic here: (a) Linear fitting function is $ y = 5.54203 x-3.83918 $; (b) linear fitting function is $ y = 6.5296 x-0.119146 $.

    图 C1  同时考虑s波至d波时的钟频移$ {\bar\delta}_{\rm s}\;(\ell = 2) $与只考虑s波和p波时的钟频移$ {\bar\delta}_{\rm s}\;(\ell = 1) $的相对误差

    Fig. C1.  Relative error of clock shifts between considering s, p, d partial waves ($ {\bar\delta}_{\rm s}\;(\ell = 2) $) and only considering s, p partial waves ($ {\bar\delta}_{\rm s}\; (\ell = 1) $).

  • [1]

    阮军, 王叶兵, 常宏, 刘涛, 董瑞芳, 张首刚 2015 物理学报 64 160308Google Scholar

    Ruan G, Wang Y B, Chang H, Jiang H F, Liu T, Dong R F, Zhang S G 2015 Acta Phys. Sin. 64 160308Google Scholar

    [2]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [3]

    Blatt S, Thomsen J W, Campbell G K, et al. 2009 Phys. Rev. A 80 052703Google Scholar

    [4]

    Zhu B, Gadway B, Foss-Feig M, Schachenmayer J, Wall M L, Hazzard K R A, Yan B, Moses S A, Covey J P, Jin D S, Ye J, Holland M, Rey A M 2014 Phys. Rev. Lett. 112 070404

    [5]

    Moses S A, Covey J P, Miecnikowski M T, Yan B, Gadway B, Ye J, Jin D S 2015 Science 350 659Google Scholar

    [6]

    Labuhn H, Barredo D, Ravets S, de Léséleuc S, Macrì T, Lahaye T, Browaeys A 2016 Nature 534 667Google Scholar

    [7]

    Aikawa K, Baier S, Frisch A, Mark M, Ravensbergen C, Ferlaino F 2014 Science 345 1484Google Scholar

    [8]

    Burdick N Q, Tang Y, Lev B L 2016 Phys. Rev. X 6 031022

    [9]

    Kadau H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I, Pfau T 2016 Nature 530 194Google Scholar

    [10]

    Heller E J, Falconer I S, Dewar R L 2002 Proceedings of the XVIII International Conference on Atomic Physics: the Expanding Frontier of Atomic Physics Cambridge, Massachusett, USA, July 28–August 2, 2002 p363

    [11]

    Zwierlein M W, Hadzibabic Z, Gupta S, Ketterle W 2003 Phys. Rev. Lett. 91 250404Google Scholar

    [12]

    Campbell G K, Boyd M M, Thomsen J W, et al. 2009 Science 324 360Google Scholar

    [13]

    Harber D M, Lewandowski H J, Mcguirk J M, Cornell E A 2002 Phys. Rev. A 66 053616

    [14]

    Fuchs J N, Gangardt D M, Laloe F 2002 Phys. Rev. Lett. 88 230404Google Scholar

    [15]

    Kadio D, Band Y B 2006 Phys. Rev. A 74 053609

    [16]

    Kurt G 2009 Phys. Rev. Lett. 103 113202Google Scholar

    [17]

    Hazlett E L, Zhang Y, Stites R W, Gibble K, O'Hara K M 2013 Phys. Rev. Lett. 110 160801

    [18]

    Lemke N D, Stecher J V, Sherman J A, Rey A M, Oates C W, Ludlow A D 2011 Phys. Rev. Lett. 107 103902Google Scholar

    [19]

    Rey A M, Martin M J, Swallows M D, Bishof M, Benko C, Blatt S, Stecher J Von, Gorshkov A, Ye J 2012 IEEE International Frequency Control Symposium (FCS): Probing Many-body Spin Interactions with an Optical Lattice Clock Baltimore, Maryland, USA, May 21–24, 2012 p1

    [20]

    Campbell S L, Hutson R B, Marti G E, Goban A, Oppong N D, Mcnally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J 2017 Science 358 90Google Scholar

    [21]

    Liu G C, Huang Y, Cheng Z, Chen Z R, Yu Z H 2020 Phys. Rev. A 101 012504Google Scholar

  • [1] 薛咏梅, 何云辉, 韩小萱, 白景旭, 焦月春, 赵建明. 铯原子系统中部分PT对称的研究. 物理学报, 2024, 73(22): 221101. doi: 10.7498/aps.73.20241200
    [2] 刘云, 王文海, 贺德晶, 周勇壮, 沈咏, 邹宏新. 中国空间站冷原子光钟激光系统. 物理学报, 2023, 72(18): 184202. doi: 10.7498/aps.72.20230412
    [3] 梁悦, 谢勇辉, 陈鹏飞, 帅涛, 裴雨贤, 徐昊天, 赵阳, 夏天, 潘晓燕, 张朋军, 林传富. 氢原子钟双选态束光学系统仿真分析. 物理学报, 2023, 72(1): 013702. doi: 10.7498/aps.72.20221363
    [4] 魏博宁, 焦志宏, 周效信. 非对称波形激光驱动的氢原子高次谐波频移及控制. 物理学报, 2022, 71(7): 073201. doi: 10.7498/aps.71.20212146
    [5] 宋会杰, 董绍武, 王翔, 章宇, 王燕平. 原子钟噪声变化时改进的Kalman滤波时间尺度算法. 物理学报, 2020, 69(17): 170201. doi: 10.7498/aps.69.20191920
    [6] 管勇, 刘丹丹, 王心亮, 张辉, 施俊如, 白杨, 阮军, 张首刚. 绝热跃迁方法测量铯喷泉钟冷原子碰撞频移. 物理学报, 2020, 69(14): 140601. doi: 10.7498/aps.69.20191800
    [7] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 物理学报, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [8] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估. 物理学报, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [9] 卢晓同, 李婷, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟碰撞频移的测量. 物理学报, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [10] 林弋戈, 方占军. 锶原子光晶格钟. 物理学报, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [11] 张星, 张奕, 张建伟, 张建, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军. 894nm高温垂直腔面发射激光器及其芯片级铯原子钟系统的应用. 物理学报, 2016, 65(13): 134204. doi: 10.7498/aps.65.134204
    [12] 尹毅, 张奕, 谭伯仲, 陈杰华, 顾思洪. 芯片原子钟相干布居囚禁谱线特性研究. 物理学报, 2015, 64(3): 034207. doi: 10.7498/aps.64.034207
    [13] 王婵娟, 陈阿海, 高先龙. 受限一维无自旋费米子系统的性质研究. 物理学报, 2012, 61(12): 127501. doi: 10.7498/aps.61.127501
    [14] 孙江, 孙娟, 王颖, 苏红新. 双光子共振非简并四波混频测量Ba原子里德伯态的碰撞展宽和频移. 物理学报, 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [15] 杨晶, 刘国宾, 顾思洪. 平行线偏光激发CPT共振方案实验研究. 物理学报, 2012, 61(4): 043202. doi: 10.7498/aps.61.043202
    [16] 马小三, 王安民. 费米环境中两个三能级原子系统的纠缠演化. 物理学报, 2008, 57(4): 2026-2030. doi: 10.7498/aps.57.2026
    [17] 王 丽, 宋海珍. 四能级原子系统中的电磁诱导吸收. 物理学报, 2006, 55(8): 4145-4149. doi: 10.7498/aps.55.4145
    [18] 柯熙政, 吴振森. 原子钟噪声中的混沌现象及其统计特性. 物理学报, 1998, 47(9): 1436-1449. doi: 10.7498/aps.47.1436
    [19] 刘仁红, 谭维翰, 张卫平. 双原子、三原子系统的共振荧光峰值与线宽. 物理学报, 1997, 46(5): 883-891. doi: 10.7498/aps.46.883
    [20] 初鑫钊, 刘淑琴, 董太乾. 铷原子频标中的微波功率频移. 物理学报, 1994, 43(7): 1072-1076. doi: 10.7498/aps.43.1072
计量
  • 文章访问数:  4193
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 修回日期:  2021-05-17
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回