搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢原子钟双选态束光学系统仿真分析

梁悦 谢勇辉 陈鹏飞 帅涛 裴雨贤 徐昊天 赵阳 夏天 潘晓燕 张朋军 林传富

引用本文:
Citation:

氢原子钟双选态束光学系统仿真分析

梁悦, 谢勇辉, 陈鹏飞, 帅涛, 裴雨贤, 徐昊天, 赵阳, 夏天, 潘晓燕, 张朋军, 林传富

Simulation analysis of hydrogen atomic clock double state-selection beam optical system

Liang Yue, Xie Yong-Hui, Chen Peng-Fei, Shuai Tao, Pei Yu-Xian, Xu Hao-Tian, Zhao Yang, Xia Tian, Pan Xiao-Yan, Zhang Peng-Jun, Lin Chuan-Fu
PDF
HTML
导出引用
  • 氢原子钟利用氢原子基态超精细能级跃迁信号进行精确计时, 具有中短期频率稳定度优异、频率漂移率低的特点. 氢原子钟需要通过磁选态将高能态原子选出, 目前广泛应用的磁选态方案中, 既有原子钟跃迁所需要的$ |F = 1, m_{\rm F} = 0\rangle $态, 还有钟跃迁所不需要的$ |F = 1, m_{\rm F} = 1 \rangle $态氢原子, 这使得氢原子钟的中长期频率稳定性难以进一步提高. 为了进一步提高氢原子钟原子跃迁谱线质量和整机性能, 通过计算和仿真, 构建了基于Majorana跃迁的氢原子钟双选态束光学系统, 优化了一级选态区、态反转区、二级选态区等关键部件的参数, 进一步排除了$ |F = 1, m_{\rm F} = 1 \rangle $态原子. 选态后的$ |F = 1, m_{\rm F} = 0\rangle $态原子纯度达到99%, 利用率为58%, 工程应用较为理想. 有效地提升了进入原子储存泡内$ |F = 1, m_{\rm F} = 0\rangle $态氢原子的占比, 同时原子的利用率处于可控范围. 通过实验对该方案的有效性进行了验证, 通过开启双选态系统, 可以观察到氢原子钟信号的增强; 通过调整双选态系统的线圈电流, 可以观察到信号随线圈电流的变化, 这验证了双选态系统的有效性.
    Hydrogen maser uses the transition frequency of hydrogen atom at hyperfine energy level of ground state to realize precise timing. It has excellent frequency stability, especially in medium- and short-term, and low frequency drift. It has been used as high-precision frequency standard in engineering fields such as time keeping, navigation, and very long baseline interferometry. Clock transition of hydrogen maser is the transition between states of $|F = 1, m_{\rm F} = 0\rangle $ and $|F = 0, m_{\rm F} = 0\rangle $. State selection is realized by state selection magnet, through which high energy atoms are converged and low energy atoms are dispersed. In conventional magnet state-selecting system, both atoms of $|F = 1, m_{\rm F} = 0\rangle $ states, which are required for the maser transition, and useless atoms of $|F = 1, m_{\rm F} = 1\rangle $ states are focused into storage bulb, which places restrictions on the medium- and long-term frequency stability performance of hydrogen maser. In order to further improve the quality of atomic transition spectral lines and the performance of hydrogen maser, double state-selection beam optical system which is based on the Majorana transition mode is constructed through calculations and simulations. In this work, we use Majorana method to invert atomic states. The magnetic field required for Majorana transition is established by using two coils with reverse current. The two coils are separated by 71 mm, and the coil axes are aligned with the direction of atomic beam. The other two pairs of transverse Helmholtz coils are separated by 22 mm in the center of the state reversal to adjust the zero point of magnetic field, which should coincide with the atomic beam to ensure a complete reversal of atomic polarity. The state reversal region is surrounded by four magnetic shields to reduce the influence of stray magnetic fields. Relationship between selected-state magnetic field gradient and distance of magnetic poles is analyzed by simulation, and trajectories of the atoms with high and low energy under different selected-state magnetic fields are calculated. The utilization and purity of high energy state atoms entering into bulb atoms are obtained. The purity of the selected $|F = 1, m_{\rm F} = 0\rangle $ state atoms reaches 99% and the utilization rate is 58%. This is ideal for engineering applications. It effectively enhances the proportion of $|F = 1, m_{\rm F} = 0\rangle $ state atoms entering into the atomic storage bulb and ensures the utilization of atoms. We verify the state-selection beam optical system experimentally. By turning on double state-selection system the maser signal can be enhanced. By adjusting the coil current of the double state-selection system, the maser signal varies with coil current, which verifies the effectiveness of double state-selection system.
      通信作者: 谢勇辉, xyh@shao.ac.cn
    • 基金项目: 中国科学院 (批准号: E1830510)资助的课题.
      Corresponding author: Xie Yong-Hui, xyh@shao.ac.cn
    • Funds: Project supported by the Chinese Academy of Sciences (Grant No. E1830510).
    [1]

    Kleppner D, Goldenberg H M, Ramsey N F 1962 Phys. Rev. 126 603Google Scholar

    [2]

    Schmittberger B L, Scherer D R 2020 arXiv: 2004.09987 [atom-ph]

    [3]

    Litvinov D A, Rudenko V N, Alakoz A V, Bach U, Zakhvatkin M V 2018 Phys. Lett. A 382 2192Google Scholar

    [4]

    Wu Z Q, Zhou S S, Hu X G, Liu L, Shuai T 2018 GPS Solutions 22 43Google Scholar

    [5]

    王志超, 刘庆会, 郑鑫, 谢勇辉, 邓涛, 蒋健华, 张超, 王玲, 梁悦 2022 天文学报 63 21

    Wang Z C, Liu Q H, Zheng X, Zhang J, Xie Y H, Deng T, Jiang J H, Zhang C, Wang L L, Liang Y 2022 Acta Astron. Sin. 63 21

    [6]

    Ashby N, Heavner T P, Jefferts S R, Parker T E, Radnaev A G, Dudin Y O 2007 Phys. Rev. Lett. 98 070802Google Scholar

    [7]

    Vanier J, Audoin C 1989 The Quantum Physics of Atomic Frequency Standards (Bristol: Hilger) pp491–499

    [8]

    王义遒 1986 量子频标原理 (北京: 科学出版社) 第403—421页

    Wang Y Q 1986 Quantum Frequency Scale Principle (Beijing: Science Press) pp403–421 (in Chinese)

    [9]

    Shinji U, Yasusada O 1983 Jpn. J. Appl. Phys. 22 1009Google Scholar

    [10]

    Urabe S, Nakagiri K, Ohta Y, Kobayashi M, Saburi Y 1980 IEEE Trans. Instrum. Meas. 29 304Google Scholar

    [11]

    Humphrey M A, Phillips D F, Walsworth R L 2000 Phys. Rev. A 62 597

    [12]

    Boyko A I, Aleynikov M S 2014 Meas. Tech. 56 1140Google Scholar

    [13]

    Mikhail A 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum Denver, CO, USA, April 12–16, 2015 p480

    [14]

    Polyakov V, Belyaev A, Demidov A, Timofeev Y V 2018 Meas. Tech. 61 784Google Scholar

    [15]

    Polyakov V, Timofeev Y, Demidov A 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium Electr Network, July 7–17, 2021 p2022-05-04

    [16]

    Morris R J 1964 Phys. Rev. 133 A740Google Scholar

    [17]

    Mattison E M, Vessot FC R, S Wei 1987 Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 34 622Google Scholar

    [18]

    王义遒 1981 计量学报 1 44

    Wang Y Q 1981 Acta Metrol. Sin. 1 44

    [19]

    王勇, 李建清, 邱实 2012 东南大学学报(自然科学版) 42 67Google Scholar

    Wang Y, Li J Q, Qiu S 2012 J. Southeast Univ. (Nat. Sci. Ed. ) 42 67Google Scholar

    [20]

    谢勇辉, 戴家瑜, 林传富 2009 全国时间频率学术会议 四川成都, 10月22—24日, 2009年 第87页

    Xie Y H, Dai J Y, Lin C F 2009 National Academic Conference on Time and Frequency Chengdu, Sichuan, October 22–24, 2009 p87 (in Chinese)

  • 图 1  选态原理

    Fig. 1.  Principle of state selection.

    图 2  双选态示意图

    Fig. 2.  Schematic diagram of the double state selection system.

    图 3  氢原子能级布局数随P值的变化

    Fig. 3.  Variation of hydrogen atomic energy level layout number with P value.

    图 4  Majorana线圈与横向Helmholtz线圈位置示意图

    Fig. 4.  Position diagram of Majorana coils and transverse Helmholtz coils.

    图 5  四极选态磁铁示意图

    Fig. 5.  Quadrupole state selective magnet.

    图 6  (a) 仿真磁场示意图; (b) 不同磁极间距对应的磁场大小

    Fig. 6.  (a) The simulated magnetic field; (b) the right figure shows the magnetic field of different magnetic poles.

    图 7  $|F = 0, m_{\rm F} = 0\rangle $$|F = 1, m_{\rm F} = -1\rangle $态原子在一级选态区运动轨迹

    Fig. 7.  Trajectories of $|F = 0, m_{\rm F} = 0\rangle $ and $|F = 1, m_{\rm F} = $$ -1\rangle $ state atoms in the first selected region.

    图 8  $|F = 1, m_{\rm F} = 1\rangle $态和$|F = 1, m_{\rm F} = 0\rangle $态原子在一级选态区内运动轨迹

    Fig. 8.  Trajectories of $|F = 1, m_{\rm F} = 1\rangle $ and $|F = 1, m_{\rm F} = $$ 0\rangle $ state atoms in the first selected region.

    图 9  $|F = 1, m_{\rm F} = 1\rangle $态和$|F = 1, m_{\rm F} = 0\rangle $态原子在二级选态区入口处偏转距离

    Fig. 9.  $|F = 1, m_{\rm F} = 1\rangle $ and $|F = 1, m_{\rm F} = 0\rangle $ state atoms deflection distance at the entrance of the secondary selected region.

    图 10  束光学系统三维模型

    Fig. 10.  The model of beam optical system.

    图 11  L4 = 60 mm, 不同rdL5下的原子纯度和利用率 (a) 原子纯度; (b) 原子利用率

    Fig. 11.  Atomic purity and utilization under different rd and L5 at L4 = 60 mm: (a) Atomic purity; (b) atomic utilization.

    图 12  L4 = 70 mm, 不同rdL5下的原子纯度和利用率 (a)原子纯度; (b)原子利用率

    Fig. 12.  At L4 = 70 mm, atomic purity and utilization under different rd and L5: (a) Atomic purity; (b) atomic utilization on the right.

    图 13  L4 = 75 mm, 不同rdL5下的原子纯度和利用率 (a) 原子纯度; (b) 原子利用率

    Fig. 13.  At L4 = 75 mm, atomic purity and utilization under different rd and L5: (a) Atomic purity; (b) atomic utilization.

    图 14  L4 = 80 mm, 不同rdL5下的原子纯度和利用率 (a) 原子纯度; (b) 原子利用率

    Fig. 14.  At L4 = 80 mm, atomic purity and utilization under different rd and L5: (a) Atomic purity; (b) atomic utilization.

    图 15  在储存泡口截面处原子点密度图

    Fig. 15.  Point density diagram of atoms at entrance of storage bulb.

    图 16  在一对线圈电流Ix = –0.5 mA的固定值下, 氢原子钟输出功率与Iy的依赖关系

    Fig. 16.  The Hydrogen atomic clock’s output power dependence on the current of the transverse pair Iy under fixed value of the another pair’s current Ix = –0.5 mA.

    图 17  改变两对线圈电流, 氢原子钟输出功率变化

    Fig. 17.  The Hydrogen atomic clock’s output power dependence on the both coil pair’s currents.

    表 1  磁场梯度与磁极间距对应关系

    Table 1.  Correspondence between magnetic field gradient and magnetic pole spacing.

    磁极间距/mm0.811.21.31.41.51.61.82
    $ \dfrac{B}{{{r_{\text{d}}}}} $/(T·mm–1)1.1670.8500.6250.5570.5100.4560.4050.3670.303
    下载: 导出CSV

    表 2  L4 = 60 mm时, 不同L5rd原子偏转概率

    Table 2.  Different L5 and rd atomic deflection probabilities at L4 = 60 mm.

    rd/mmL5/mm
    60708090100110120130140150
    1.280.1%84.2%88.5%96.8%99.4%100.0%100.0%100.0%100.0%100.0%
    1.371.2%75.0%76.0%85.9%91.0%98.8%100.0%100.0%100.0%100.0%
    1.465.5%70.5%72.5%75.2%85.7%91.2%95.2%99.7%100.0%100.0%
    1.561.5%64.2%65.2%69.6%75.0%81.7%88.2%93.9%96.5%99.4%
    1.657.2%58.6%61.2%67.5%69.5%73.4%77.5%83.0%88.3%93.0%
    下载: 导出CSV

    表 3  L4 = 70 mm时, 不同L5rd原子偏转概率

    Table 3.  Different L5 and rd atomic deflection probabilities at L4 = 70 mm.

    rd/mmL5/mm
    60708090100110120130140150
    1.294.5%96.1%100.0%100.0%92.3%97.6%99.7%100.0%100.0%100.0%
    1.386.7%88.0%96.8%100.0%100.0%100.0%100.0%100.0%100.0%100.0%
    1.476.0%79.0%88.2%96.1%99.5%100.0%100.0%100.0%100.0%100.0%
    1.571.2%73.6%76.6%84.8%91.3%97.6%99.7%100.0%100.0%100.0%
    1.666.2%67.2%71.2%79.7%84.8%88.3%93.1%97.4%100.0%100.0%
    下载: 导出CSV

    表 4  L4 = 80 mm时, 不同L5rd原子偏转概率

    Table 4.  Different L5 and rd atomic deflection probabilities at L4 = 80 mm.

    rd/mmL5/mm
    60708090100110120130140150
    1.299.0%100.0%100.0%100.0%100.0%100.0%100.0%100.0%100.0%100.0%
    1.397.8%100.0%100.0%100.0%100.0%100.0%100.0%100.0%100.0%100.0%
    1.489.5%92.3%97.2%100.0%100.0%100.0%100.0%100.0%100.0%100.0%
    1.582.9%83.5%87.8%93.4%98.7%100.0%100.0%100.0%100.0%100.0%
    1.676.2%78.2%82.3%90.1%95.4%98.2%100.0%100.0%100.0%100.0%
    下载: 导出CSV
  • [1]

    Kleppner D, Goldenberg H M, Ramsey N F 1962 Phys. Rev. 126 603Google Scholar

    [2]

    Schmittberger B L, Scherer D R 2020 arXiv: 2004.09987 [atom-ph]

    [3]

    Litvinov D A, Rudenko V N, Alakoz A V, Bach U, Zakhvatkin M V 2018 Phys. Lett. A 382 2192Google Scholar

    [4]

    Wu Z Q, Zhou S S, Hu X G, Liu L, Shuai T 2018 GPS Solutions 22 43Google Scholar

    [5]

    王志超, 刘庆会, 郑鑫, 谢勇辉, 邓涛, 蒋健华, 张超, 王玲, 梁悦 2022 天文学报 63 21

    Wang Z C, Liu Q H, Zheng X, Zhang J, Xie Y H, Deng T, Jiang J H, Zhang C, Wang L L, Liang Y 2022 Acta Astron. Sin. 63 21

    [6]

    Ashby N, Heavner T P, Jefferts S R, Parker T E, Radnaev A G, Dudin Y O 2007 Phys. Rev. Lett. 98 070802Google Scholar

    [7]

    Vanier J, Audoin C 1989 The Quantum Physics of Atomic Frequency Standards (Bristol: Hilger) pp491–499

    [8]

    王义遒 1986 量子频标原理 (北京: 科学出版社) 第403—421页

    Wang Y Q 1986 Quantum Frequency Scale Principle (Beijing: Science Press) pp403–421 (in Chinese)

    [9]

    Shinji U, Yasusada O 1983 Jpn. J. Appl. Phys. 22 1009Google Scholar

    [10]

    Urabe S, Nakagiri K, Ohta Y, Kobayashi M, Saburi Y 1980 IEEE Trans. Instrum. Meas. 29 304Google Scholar

    [11]

    Humphrey M A, Phillips D F, Walsworth R L 2000 Phys. Rev. A 62 597

    [12]

    Boyko A I, Aleynikov M S 2014 Meas. Tech. 56 1140Google Scholar

    [13]

    Mikhail A 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum Denver, CO, USA, April 12–16, 2015 p480

    [14]

    Polyakov V, Belyaev A, Demidov A, Timofeev Y V 2018 Meas. Tech. 61 784Google Scholar

    [15]

    Polyakov V, Timofeev Y, Demidov A 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium Electr Network, July 7–17, 2021 p2022-05-04

    [16]

    Morris R J 1964 Phys. Rev. 133 A740Google Scholar

    [17]

    Mattison E M, Vessot FC R, S Wei 1987 Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 34 622Google Scholar

    [18]

    王义遒 1981 计量学报 1 44

    Wang Y Q 1981 Acta Metrol. Sin. 1 44

    [19]

    王勇, 李建清, 邱实 2012 东南大学学报(自然科学版) 42 67Google Scholar

    Wang Y, Li J Q, Qiu S 2012 J. Southeast Univ. (Nat. Sci. Ed. ) 42 67Google Scholar

    [20]

    谢勇辉, 戴家瑜, 林传富 2009 全国时间频率学术会议 四川成都, 10月22—24日, 2009年 第87页

    Xie Y H, Dai J Y, Lin C F 2009 National Academic Conference on Time and Frequency Chengdu, Sichuan, October 22–24, 2009 p87 (in Chinese)

  • [1] 梁殿明, 王超, 史浩东, 刘壮, 付强, 张肃, 战俊彤, 余益欣, 李英超, 姜会林. 基于Zernike模型系数优化的椭球型窗口光学系统像差校正. 物理学报, 2020, 69(24): 244203. doi: 10.7498/aps.69.20200933
    [2] 宋会杰, 董绍武, 王翔, 章宇, 王燕平. 原子钟噪声变化时改进的Kalman滤波时间尺度算法. 物理学报, 2020, 69(17): 170201. doi: 10.7498/aps.69.20191920
    [3] 张星, 张奕, 张建伟, 张建, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军. 894nm高温垂直腔面发射激光器及其芯片级铯原子钟系统的应用. 物理学报, 2016, 65(13): 134204. doi: 10.7498/aps.65.134204
    [4] 庞武斌, 岑兆丰, 李晓彤, 钱炜, 尚红波, 许伟才. 偏振对光学系统成像质量的影响. 物理学报, 2012, 61(23): 234202. doi: 10.7498/aps.61.234202
    [5] 周国泉. 洛伦兹光束经光阑失调傍轴光学系统的传输. 物理学报, 2009, 58(9): 6185-6191. doi: 10.7498/aps.58.6185
    [6] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究. 物理学报, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [7] 宋岩峰, 邵晓鹏, 徐 军. 实现复消色差的超常温混合红外光学系统. 物理学报, 2008, 57(10): 6298-6303. doi: 10.7498/aps.57.6298
    [8] 李 智, 张家森, 杨 景, 龚旗煌. 飞秒时间分辨近场光学系统实现及其应用. 物理学报, 2007, 56(6): 3630-3635. doi: 10.7498/aps.56.3630
    [9] 郭汉明, 陈家璧, 庄松林. 相干点源照明时消球差光学系统的像场结构. 物理学报, 2007, 56(2): 811-818. doi: 10.7498/aps.56.811
    [10] 李东熙, 卢振武, 孙 强, 刘 华, 张云翠. 基于Wassermann-Wolf方程的共形光学系统设计研究. 物理学报, 2007, 56(10): 5766-5771. doi: 10.7498/aps.56.5766
    [11] 董科研, 孙 强, 李永大, 张云翠, 王 健, 葛振杰, 孙金霞, 刘建卓. 折射/衍射混合红外双焦光学系统设计. 物理学报, 2006, 55(9): 4602-4607. doi: 10.7498/aps.55.4602
    [12] 黄春佳, 厉江帆, 贺慧勇. 二维氢原子的双波描述. 物理学报, 2000, 49(4): 615-618. doi: 10.7498/aps.49.615
    [13] 黄湘友, 王继业, 叶学敏. 一维氢原子的双波描述. 物理学报, 1999, 48(4): 566-574. doi: 10.7498/aps.48.566
    [14] 柯熙政, 吴振森. 原子钟噪声中的混沌现象及其统计特性. 物理学报, 1998, 47(9): 1436-1449. doi: 10.7498/aps.47.1436
    [15] 张原, 朱熙文, 梅刚华. Eu原子束通过选态磁铁时的偏转特性. 物理学报, 1995, 44(5): 685-692. doi: 10.7498/aps.44.685
    [16] 梅刚华, 朱熙文, 黄贵龙. 六极磁铁选态系统性能分析与实验测量. 物理学报, 1991, 40(11): 1776-1785. doi: 10.7498/aps.40.1776
    [17] 洪熙春, 黄维刚, 王绍民. 失调光学系统的衍射积分公式. 物理学报, 1982, 31(12): 75-83. doi: 10.7498/aps.31.75
    [18] 杨国桢, 顾本源. 光学系统中振幅和相位的恢复问题. 物理学报, 1981, 30(3): 410-413. doi: 10.7498/aps.30.410
    [19] 庄松林, 陈祥祯. 部分相干情形下象差光学系统的直边衍射. 物理学报, 1979, 28(5): 59-71. doi: 10.7498/aps.28.59
    [20] 王之江. 同轴柱面光学系统的象差. 物理学报, 1960, 16(4): 205-213. doi: 10.7498/aps.16.205
计量
  • 文章访问数:  3579
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 修回日期:  2022-08-07
  • 上网日期:  2022-12-24
  • 刊出日期:  2023-01-05

/

返回文章
返回