搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锶原子光晶格钟碰撞频移的测量

卢晓同 李婷 孔德欢 王叶兵 常宏

引用本文:
Citation:

锶原子光晶格钟碰撞频移的测量

卢晓同, 李婷, 孔德欢, 王叶兵, 常宏

Measurement of collision frequency shift in strontium optical lattice clock

Lu Xiao-Tong, Li Ting, Kong De-Huan, Wang Ye-Bing, Chang Hong
PDF
HTML
导出引用
  • 中性原子光晶格钟的系统不确定度评估中, 碰撞频移引起的频移修正量和不确定度是其中重要的一项, 且其评估结果将直接影响交流斯塔克频移的评估. 碰撞频移来源于囚禁在同一个格点里面原子间的相互作用, 其大小与原子的密度有关. 本文实验测量了国家授时中心87Sr光晶格钟的碰撞频移. 利用水平方向的一维光晶格囚禁数目在104量级、温度为3.4 μK的冷原子, 用极化光将原子抽运到基态mF = ± 9/2的塞曼子能级上, 获得了钟跃迁自旋极化谱. 通过高低原子密度自比对的方法测量了87Sr光晶格钟系统中与原子密度相关的碰撞频移. 在原子密度差为4 × 1010/cm3的条件下对系统的碰撞频移进行了37次独立测量, 得到系统的碰撞频移为–0.13 Hz, 统计不确定度为3.1 × 10–17. 自比对的艾伦偏差在8000 s时达到了4 × 10–17, 表明系统的测量精度在10–17量级是可靠的, 为锶原子光晶格钟系统不确定度全面评估奠定了基础.
    In a one-dimensional Fermion optical lattice clock, the p-wave scattering can occur when collision energy is sufficient to overcome the centrifugal barrier of p-wave scattering. According to Pauli exclusion principle, the s-wave scattering is forbidden between two identical Fermions. However, the s-wave scattering may also exist due to inhomogeneous excitation which leads to some difference between two Fermions. In terms of the uncertainty evaluation of a neutral atomic optical lattice clock, the frequency correction and uncertainty caused by atomic interaction cannot be ignored, and it will affect the evaluation of AC stark frequency shift. So the uncertainty evaluation of the collision frequency shift should be as small as possible. Only in this way can a neutral atomic optical lattice clock have a state-of-the-art performance. The collision frequency shift originates from the interaction between atoms trapped in an identical lattice. In this study, the collision frequency shift of 87Sr optical lattice clock at the National Timing Service Center is measured experimentally. A horizontal one-dimensional optical lattice is constructed. The number of tapped atoms is about 104 at a temperature of 3.4 μK. A laser is used to pump the atoms to either of the Zeeman energy levels of mF = ± 9/2 in the ground state, and the clock transition spin polarization spectrum is obtained. In a spin polarized Fermions system, the collision frequency shift relating to atomic density is measured by the method of self-comparison. The method of self-comparison, which takes full advantage of the excellent short-term stability of the clock laser, can be used to measure the frequency difference caused by the variety of system parameters. Owing to the fact that the collision frequency shift is proportional to atomic density, the collision frequency shift can be measured by the method of self-comparison between high and low atomic density. In the experiment, the systematic state is changed between high and low atomic density by periodically changing the loading time of the first stage of cooling. In order to reduce the statistical uncertainty of the measurement, the collision frequency shift is separately measured 37 times. Finally, when the atomic density is 4 × 1010/cm3, the collision frequency shift is –0.13 Hz, and the statistical uncertainty of the measurement is 3.1 × 10–17. The Allan deviation of self-comparison between low and high atomic density reaches 4 × 10–17 after 8000 s averaging time, indicating that the accuracy of the measurement is reliable and on the order of 10–17. This work lays a foundation of the total uncertainty evaluation of 87Sr optical lattice clock.
      通信作者: 王叶兵, wangyebing@ntsc.c.cn ; 常宏, changhong@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11803042, 11474282, 61775220)、国家重点研发计划(批准号: 2016YFF0200201)、中国科学院战略性先导科技专项(B类)(批准号: XDB21030100)、中国科学院前沿科学重点研究项目(批准号: QYZDB-SSW-JSC004)和中国科学院青年创新促进会(批准号: 2019400)资助的课题
      Corresponding author: Wang Ye-Bing, wangyebing@ntsc.c.cn ; Chang Hong, changhong@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11803042, 11474282, 61775220), the National Key Research and Development Program of China (Grant No. 2016YFF0200201), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004), and the Youth Innovation Promotion Association the Chinese Academy of Sciences (Grant No. 2019400)
    [1]

    Margolis H 2014 Nat. Phys. 10 82Google Scholar

    [2]

    Riehle F 2015 C. R. Phys. 16 506Google Scholar

    [3]

    Bregolin F, Milani G, Pizzocaro M, Rauf B Thoumany P, Levi F, Calonico D 2017 J. Phys.: Conf. Ser. 841 012015Google Scholar

    [4]

    Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B, Katori H 2016 Nat. Photon. 10 662Google Scholar

    [5]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630Google Scholar

    [6]

    Delva P, Lodewyck J 2013 Acta Futura 7 67

    [7]

    Lion G, Panet I, Wolf P, Guerlin C, Bize S, Delva P 2017 J. Geod. 91 597Google Scholar

    [8]

    Grotti J, Koller S, Vogt S, et al. 2018 Nat. Phys. 14 437Google Scholar

    [9]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [10]

    Delva P, Lodewyck J, Bilicki S, et al. 2017 Phys. Rev. Lett. 118 221102Google Scholar

    [11]

    Derevianko A, Pospelov M 2014 Nat. Phys. 10 933Google Scholar

    [12]

    Arvanitaki A, Huang J, van Tilburg K 2015 Phys. Rev. D 91 015015Google Scholar

    [13]

    Wcisło P, Morzyński P, Bober M, Cygan A, Lisak D, Ciuryło R, Zawada M 2016 Nat. Astron. 1 0009Google Scholar

    [14]

    Hees A, Guéna J, Abgrall M, Bize S, Wolf P 2016 Phys. Rev. Lett. 117 061301Google Scholar

    [15]

    Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat. Commun. 8 1195Google Scholar

    [16]

    Blatt S, Ludlow A D, Campbell G K, et al. 2008 Phys. Rev. Lett. 100 140801Google Scholar

    [17]

    Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A, Margolis H S, Szymaniec K, Lea S N, Bongs K, Gill P 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [18]

    Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802Google Scholar

    [19]

    Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 321Google Scholar

    [20]

    Campbell S L, Hutson R B, Marti G E, et al. 2017 Science 358 90Google Scholar

    [21]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601Google Scholar

    [22]

    Liu H, Zhang X, Jiang K L, Wang J Q, Zhu Q, Xiong Z X, He L X, Lü B L 2017 Chin. Phys. Lett. 34 20601Google Scholar

    [23]

    Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, Chang H 2018 Chin. Phys. B 27 023701Google Scholar

    [24]

    李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 093701Google Scholar

    Li T, Lu X T, Zhang Q, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 093701Google Scholar

    [25]

    Gao Q, Zhou M, Han C, Li S, Zhang S, Yao Y, Li B, Qiao H, Ai D, Lou G, Zhang M, Jiang Y, Bi Z, Ma L, Xu X Y 2018 Sci. Rep. 8 8022Google Scholar

    [26]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [27]

    Lemke N D, Stecher J V, Sherman J A, Rey A M, Oates C W, Ludlow A D 2011 Phys. Rev. Lett. 107 103902Google Scholar

    [28]

    Zhang X, Bishof M, Bromley S L, Kraus C V, Safronova M S, Zoller P, Rey A M, Ye J 2014 Science 345 1467Google Scholar

    [29]

    Rey A M, Gorshkov A V, Kraus C V 2014 Ann. Phys. 340 311Google Scholar

    [30]

    Sang K L, Chang Y P, Won-Kyu L, Dai-Hyuk Y 2016 New J. Phys. 18 033030Google Scholar

    [31]

    Ludlow A D, Zelevinsky T, Campbell G K 2008 Science 319 1805Google Scholar

    [32]

    Wang Q, Lin Y G, Meng F 2016 Chin. Phys. Lett. 33 103201Google Scholar

    [33]

    Nicholson T L, Martin M J, Williams J R, Bloom B J, Bishof M M, Swallows D, Campbell S L, Ye J 2012 Phys. Rev. Lett. 109 230801Google Scholar

    [34]

    Wang Y B, Lu X T, Lu B Q, Kong D H, Chang H 2018 Appl. Sci. 8 2194Google Scholar

    [35]

    McDonald M, McGuyer B H, Iwata G Z, Zelevinsky T 2015 Phys. Rev. Lett. 114 023001Google Scholar

    [36]

    Falke S, Schnatz H, Vellore Winfred J S R, Middelmann T, Vogt S, Weyers S, Lipphardt B, Grosche G, Riehle F, Sterr U, Lisdat C 2011 Metrologia 48 399Google Scholar

  • 图 1  锶原子光晶格钟光晶格和钟跃迁探测结构简图, 其中MS为机械开关; L1为透镜; GP1-2为格兰泰勒棱镜; CR为凹面镜

    Fig. 1.  Schematic diagram of the optical lattice and clock transition detection of strontium optical lattice clock. L1, lens; CR, concave mirror; GP1-2, Glan prism; MS, mechanical switch.

    图 2  87Sr原子钟跃迁谱线 (a)边带可分辨钟跃迁谱线; (b)钟跃迁自旋极化谱

    Fig. 2.  Spectra of the 87Sr clock transition: (a) Sideband resolvable clock transition line measured in the experiment; (b) spin-polarized spectra of the clock transitions.

    图 3  自比对方法 (a)自旋极化峰, fHfL分别对应高密度和低密度状态下钟跃迁的中心频率, δvC为碰撞频移的值; (b) 锁定反馈原理, fH1fL1是初始设定的激光频率, $f'_{\rm H1} $$f'_{\rm L1} $是修正激光频率, Err1Err2是误差信号, Δf1和Δf2是频率修正量; (c) 时间序列; (d)交替改变原子密度获得的钟跃迁谱线; (e)高、低原子密度状态下原子的跃迁几率

    Fig. 3.  The method of self-comparison: (a) The spin-polarized peaks, fH and fL are the center frequency of locked clock transition, δvC is the value of collision frequency shift; (b) the feedback loop schematic, fH1 and fL1 are initial clock laser frequency of high-density and low-density respectively, $f'_{\rm H1} $ and $f'_{\rm L1} $ are the frequency of being corrected, Err1 and Err2 are error signals, Δf1 and Δf2 are revisionary frequency; (c) the time sequence; (d) the clock transition spectrum during alternately changing atomic density; (e) the excitation fraction at high and low atomic densities.

    图 4  高低密度自比对艾伦偏差

    Fig. 4.  The Allan deviation obtained by the method of self-comparison between low and high atomic density.

    图 5  碰撞频移测量结果

    Fig. 5.  Measurement the collision frequency shift.

  • [1]

    Margolis H 2014 Nat. Phys. 10 82Google Scholar

    [2]

    Riehle F 2015 C. R. Phys. 16 506Google Scholar

    [3]

    Bregolin F, Milani G, Pizzocaro M, Rauf B Thoumany P, Levi F, Calonico D 2017 J. Phys.: Conf. Ser. 841 012015Google Scholar

    [4]

    Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B, Katori H 2016 Nat. Photon. 10 662Google Scholar

    [5]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630Google Scholar

    [6]

    Delva P, Lodewyck J 2013 Acta Futura 7 67

    [7]

    Lion G, Panet I, Wolf P, Guerlin C, Bize S, Delva P 2017 J. Geod. 91 597Google Scholar

    [8]

    Grotti J, Koller S, Vogt S, et al. 2018 Nat. Phys. 14 437Google Scholar

    [9]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [10]

    Delva P, Lodewyck J, Bilicki S, et al. 2017 Phys. Rev. Lett. 118 221102Google Scholar

    [11]

    Derevianko A, Pospelov M 2014 Nat. Phys. 10 933Google Scholar

    [12]

    Arvanitaki A, Huang J, van Tilburg K 2015 Phys. Rev. D 91 015015Google Scholar

    [13]

    Wcisło P, Morzyński P, Bober M, Cygan A, Lisak D, Ciuryło R, Zawada M 2016 Nat. Astron. 1 0009Google Scholar

    [14]

    Hees A, Guéna J, Abgrall M, Bize S, Wolf P 2016 Phys. Rev. Lett. 117 061301Google Scholar

    [15]

    Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat. Commun. 8 1195Google Scholar

    [16]

    Blatt S, Ludlow A D, Campbell G K, et al. 2008 Phys. Rev. Lett. 100 140801Google Scholar

    [17]

    Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A, Margolis H S, Szymaniec K, Lea S N, Bongs K, Gill P 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [18]

    Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802Google Scholar

    [19]

    Takamoto M, Hong F L, Higashi R, Katori H 2005 Nature 435 321Google Scholar

    [20]

    Campbell S L, Hutson R B, Marti G E, et al. 2017 Science 358 90Google Scholar

    [21]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601Google Scholar

    [22]

    Liu H, Zhang X, Jiang K L, Wang J Q, Zhu Q, Xiong Z X, He L X, Lü B L 2017 Chin. Phys. Lett. 34 20601Google Scholar

    [23]

    Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, Chang H 2018 Chin. Phys. B 27 023701Google Scholar

    [24]

    李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 093701Google Scholar

    Li T, Lu X T, Zhang Q, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 093701Google Scholar

    [25]

    Gao Q, Zhou M, Han C, Li S, Zhang S, Yao Y, Li B, Qiao H, Ai D, Lou G, Zhang M, Jiang Y, Bi Z, Ma L, Xu X Y 2018 Sci. Rep. 8 8022Google Scholar

    [26]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [27]

    Lemke N D, Stecher J V, Sherman J A, Rey A M, Oates C W, Ludlow A D 2011 Phys. Rev. Lett. 107 103902Google Scholar

    [28]

    Zhang X, Bishof M, Bromley S L, Kraus C V, Safronova M S, Zoller P, Rey A M, Ye J 2014 Science 345 1467Google Scholar

    [29]

    Rey A M, Gorshkov A V, Kraus C V 2014 Ann. Phys. 340 311Google Scholar

    [30]

    Sang K L, Chang Y P, Won-Kyu L, Dai-Hyuk Y 2016 New J. Phys. 18 033030Google Scholar

    [31]

    Ludlow A D, Zelevinsky T, Campbell G K 2008 Science 319 1805Google Scholar

    [32]

    Wang Q, Lin Y G, Meng F 2016 Chin. Phys. Lett. 33 103201Google Scholar

    [33]

    Nicholson T L, Martin M J, Williams J R, Bloom B J, Bishof M M, Swallows D, Campbell S L, Ye J 2012 Phys. Rev. Lett. 109 230801Google Scholar

    [34]

    Wang Y B, Lu X T, Lu B Q, Kong D H, Chang H 2018 Appl. Sci. 8 2194Google Scholar

    [35]

    McDonald M, McGuyer B H, Iwata G Z, Zelevinsky T 2015 Phys. Rev. Lett. 114 023001Google Scholar

    [36]

    Falke S, Schnatz H, Vellore Winfred J S R, Middelmann T, Vogt S, Weyers S, Lipphardt B, Grosche G, Riehle F, Sterr U, Lisdat C 2011 Metrologia 48 399Google Scholar

  • [1] 张志强. 简谐与光晶格复合势阱中旋转二维玻色-爱因斯坦凝聚体中的涡旋链. 物理学报, 2022, 71(22): 220304. doi: 10.7498/aps.71.20221312
    [2] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测. 物理学报, 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [3] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [4] 文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖. 超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现. 物理学报, 2020, 69(19): 193201. doi: 10.7498/aps.69.20200513
    [5] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 物理学报, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [6] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估. 物理学报, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [7] 李晓云, 孙博文, 许正倩, 陈静, 尹亚玲, 印建平. 基于调制光晶格的中性分子束光学Stark减速与囚禁的理论研究. 物理学报, 2018, 67(20): 203702. doi: 10.7498/aps.67.20181348
    [8] 林弋戈, 方占军. 锶原子光晶格钟. 物理学报, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [9] 郭阳, 尹默娟, 徐琴芳, 王叶兵, 卢本全, 任洁, 赵芳婧, 常宏. 锶原子光晶格钟自旋极化谱线的探测. 物理学报, 2018, 67(7): 070601. doi: 10.7498/aps.67.20172759
    [10] 陈海军. 变分法研究二维光晶格中玻色-爱因斯坦凝聚的调制不稳定性. 物理学报, 2015, 64(5): 054702. doi: 10.7498/aps.64.054702
    [11] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究. 物理学报, 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [12] 余学才, 汪平和, 张利勋. 光晶格动量依赖偶极势中原子运动. 物理学报, 2013, 62(14): 144202. doi: 10.7498/aps.62.144202
    [13] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性. 物理学报, 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [14] 赵旭, 赵兴东, 景辉. 利用光晶格自旋链中磁振子的激发模拟有限温度下光子的动力学 Casimir 效应. 物理学报, 2013, 62(6): 060302. doi: 10.7498/aps.62.060302
    [15] 杨树荣, 蔡宏强, 漆伟, 薛具奎. 光晶格中超流费米气体的能隙孤子. 物理学报, 2011, 60(6): 060304. doi: 10.7498/aps.60.060304
    [16] 徐志君, 刘夏吟. 光晶格中非相干超冷原子的密度关联效应. 物理学报, 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [17] 张科智, 王建军, 刘国荣, 薛具奎. 两组分BECs在光晶格中的隧穿动力学及其周期调制效应. 物理学报, 2010, 59(5): 2952-2961. doi: 10.7498/aps.59.2952
    [18] 周骏, 任海东, 冯亚萍. 强非局域光晶格中空间孤子的脉动传播. 物理学报, 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [19] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性. 物理学报, 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [20] 徐志君, 程 成, 杨欢耸, 武 强, 熊宏伟. 三维光晶格中玻色凝聚气体基态波函数及干涉演化. 物理学报, 2004, 53(9): 2835-2842. doi: 10.7498/aps.53.2835
计量
  • 文章访问数:  7329
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-26
  • 修回日期:  2019-09-17
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

/

返回文章
返回