-
温度是衡量燃烧效率的重要参数之一, 温度的测量对工业燃烧过程的节能减排控制和发动机状态诊断等都具有重要意义. 可调谐半导体吸收光谱技术是一种非侵入式测量技术, 具有较强的环境适应性, 可实现快速、原位检测. 本文基于H2O在7185.6, 6807.8以及7444.35/37 cm–1三条吸收线集成测量系统, 三只激光器为时分复用方式, 选择波长调制技术, 利用扣除背景的1f归一化2f信号反演燃烧流场温度, 通过直接比较实际测量的谐波信号与建立的吸收模型获得的谐波信号, 实现了某型号发动机模型喷口温度的准确测量, 测量系统时间分辨小于1 ms, 最高测量温度和最大压强可到1512 K和10.58 atm (1 atm = 1.013 × 105 Pa), 测量误差小于5.68%, 验证了该测量方法的实用性和系统的稳定性.Temperature is one of the important parameters to measure the combustion efficiency. The measurement of temperature is of great significance for saving energy and reducing emission in industrial combustion process and diagnosing the engine state. The tunable diode laser absorption spectroscopy is a non-invasive measurement technology with strong environmental adaptability for fast, in-situ detection. Based on the three absorption lines of H2O at 7185.6 cm–1, 6807.8 cm–1 and 7444.35/37 cm–1, the wavelength modulated spectrum absorption model is established and laboratory-calibrated; using the background-subtracting WMS-2f/1f method and the best fit method, the temperature is measured. The outlet temperature of the single-head combustion chamber is accurately realized. The outlet temperature of the single-sector combustion chamber is also accurately measured. The measurement is verified in a pressure range of 3.39-10.58 atm and a temperature range of 958-1512 K. The time resolution of the measurement system is less than 1 ms, and the measurement error is less than 5.68%, thus verifying the practicality of the measurement method and the stability of the measurement system.
-
Keywords:
- absorbance spectroscopy /
- wavelength modulation spectroscopy /
- high temperature and pressure /
- combustion flow field
[1] Goldenstein C S, Spearrin R M, Schultz I A, Jeffries J B, Hanson R K 2014 Meas. Sci. Technol. 25 055101Google Scholar
[2] Chao X, Jeffries J B, Hanson R K 2011 Proc. Combust. Inst. 33 725Google Scholar
[3] Chao X, Jeffries J B, Hanson R K 2012 Appl. Phys. B 110 359
[4] Ortwein P, Woiwode W, Fleck S, Eberhard M, Kolb T, Wagner S, Gisi M, Ebert V 2010 Exp. Fluids 49 961Google Scholar
[5] Sun K, Sur R, Chao X, Jeffries J B, Hanson R K, Pummill R J, Whitty K J 2013 Proc. Combust. Inst. 34 3593Google Scholar
[6] Caswell A W, Kraetschmer T, Rein K, Sanders S T, Roy S, Shouse D T, Gord J R 2010 Appl. Opt. 49 4963Google Scholar
[7] Li H, Wehe S D, McManus K R 2011 Proc. Combust. Inst. 33 717Google Scholar
[8] Li H, Zhou X, Jeffries J B, Hanson R K 2007 Proc. Combust. Inst. 31 3215Google Scholar
[9] Liu X, Jeffries J B, Hanson R K, Hinckley K M, Woodmansee M A 2005 Appl. Phys. B 82 469
[10] Witzel O, Klein A, Meffert C, Schulz C, Kaiser S A, Ebert V 2015 Proc. Combust. Inst. 35 3653Google Scholar
[11] Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert V 2012 Appl. Phys. B 109 521Google Scholar
[12] Wright P, Terzija N, Davidson J L, Garcia-Castillo S, Garcia-Stewart C, Pegrum S, Colbourne S, Turner P, Crossley S D, Litt T 2010 Chem. Eng. J. 158 2Google Scholar
[13] Goldenstein C S, Schultz I A, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 717Google Scholar
[14] Goldenstein C S, Strand C L, Schultz I A, Sun K, Jeffries J B, Hanson R K 2014 Appl. Opt. 53 356Google Scholar
[15] Schultz I A, Goldenstein C S, Mitchell Spearrin R, Jeffries J B, Hanson R K, Rockwell R D, Goyne C P 2014 J. Propul. Power 30 1595Google Scholar
[16] Spearrin R M, Goldenstein C S, Schultz I A, Jeffries J B, Hanson R K 2014 Appl. Phys. B 117 689Google Scholar
[17] Goldenstein C S, Almodóvar C A, Jeffries J B, Hanson R K, Brophy C M 2014 Meas. Sci. Technol. 25 174
[18] Ma L, Cai W, Caswell A W, Kraetschmer T, Gord J R 2009 Opt. Express 17 8602Google Scholar
[19] Strand C L 2014 Ph. D. Dissertation (California: Stanford University)
[20] Goldenstein C S 2014 Ph. D. Dissertation (California: Stanford University)
[21] Hui A K, Armstrong B H, Wray A A 1978 J. Quant. Spectrosc. Radiat. Transfer 19 509Google Scholar
[22] 李宁, 翁春生 2011 物理学报 60 070701
Li N, Weng C S 2011 Acta Phys. Sin. 60 070701
[23] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏 2014 物理学报 63 083301Google Scholar
Lan L J, Ding Y J, Jia J W, Du Y J, Peng Z M 2014 Acta Phys. Sin. 63 083301Google Scholar
-
表 1 三条吸收线谱线参数
Table 1. Spectroscopic parameters of three absorption lines.
${\upsilon _0}$/cm–1 $S({T_0})$@296 K/cm–2·atm–1 E''/cm–1 γair0/cm–1·atm–1 γself/cm–1·atm–1 7185.60 1.91 × 10–2 1045.06 0.041 0.198 6807.83 6.03 × 10–6 3319.45 0.098 0.183 7444.35/37 1.10 × 10–3 1774/1806 0.019/0.0153 0.2/0.23 表 2 不同工况参数
Table 2. Parameters of different operating conditions
State Pressure/atm Flow/kg·s–1 Average temperature/K 1 3.49 0.511 958 2 7.04 0.997 1420 3 10.58 1.48 1512 表 3 测量结果
Table 3. Measurement result.
State & illustrate State 1 State 2 State 3 First group Average temperature/K 975.41 1481.29 1596.33 Absolute error/K 17.41 61.29 84.33 Relative error/% 1.82 4.32 5.58 Second group Average temperature/K 980.57 1473.66 1595.77 Absolute error/K 22.57 53.66 83.77 Relative error/% 2.36 3.78 5.54 Third group Average temperature/K 982.91 1481.46 1601.50 Absolute error/K 24.91 61.46 89.50 Relative error/% 2.60 4.33 5.92 Total Average temperature/K 979.63 1478.80 1597.87 Absolute error/K 21.63 58.80 85.87 Relative error/% 2.26 4.14 5.68 -
[1] Goldenstein C S, Spearrin R M, Schultz I A, Jeffries J B, Hanson R K 2014 Meas. Sci. Technol. 25 055101Google Scholar
[2] Chao X, Jeffries J B, Hanson R K 2011 Proc. Combust. Inst. 33 725Google Scholar
[3] Chao X, Jeffries J B, Hanson R K 2012 Appl. Phys. B 110 359
[4] Ortwein P, Woiwode W, Fleck S, Eberhard M, Kolb T, Wagner S, Gisi M, Ebert V 2010 Exp. Fluids 49 961Google Scholar
[5] Sun K, Sur R, Chao X, Jeffries J B, Hanson R K, Pummill R J, Whitty K J 2013 Proc. Combust. Inst. 34 3593Google Scholar
[6] Caswell A W, Kraetschmer T, Rein K, Sanders S T, Roy S, Shouse D T, Gord J R 2010 Appl. Opt. 49 4963Google Scholar
[7] Li H, Wehe S D, McManus K R 2011 Proc. Combust. Inst. 33 717Google Scholar
[8] Li H, Zhou X, Jeffries J B, Hanson R K 2007 Proc. Combust. Inst. 31 3215Google Scholar
[9] Liu X, Jeffries J B, Hanson R K, Hinckley K M, Woodmansee M A 2005 Appl. Phys. B 82 469
[10] Witzel O, Klein A, Meffert C, Schulz C, Kaiser S A, Ebert V 2015 Proc. Combust. Inst. 35 3653Google Scholar
[11] Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert V 2012 Appl. Phys. B 109 521Google Scholar
[12] Wright P, Terzija N, Davidson J L, Garcia-Castillo S, Garcia-Stewart C, Pegrum S, Colbourne S, Turner P, Crossley S D, Litt T 2010 Chem. Eng. J. 158 2Google Scholar
[13] Goldenstein C S, Schultz I A, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 717Google Scholar
[14] Goldenstein C S, Strand C L, Schultz I A, Sun K, Jeffries J B, Hanson R K 2014 Appl. Opt. 53 356Google Scholar
[15] Schultz I A, Goldenstein C S, Mitchell Spearrin R, Jeffries J B, Hanson R K, Rockwell R D, Goyne C P 2014 J. Propul. Power 30 1595Google Scholar
[16] Spearrin R M, Goldenstein C S, Schultz I A, Jeffries J B, Hanson R K 2014 Appl. Phys. B 117 689Google Scholar
[17] Goldenstein C S, Almodóvar C A, Jeffries J B, Hanson R K, Brophy C M 2014 Meas. Sci. Technol. 25 174
[18] Ma L, Cai W, Caswell A W, Kraetschmer T, Gord J R 2009 Opt. Express 17 8602Google Scholar
[19] Strand C L 2014 Ph. D. Dissertation (California: Stanford University)
[20] Goldenstein C S 2014 Ph. D. Dissertation (California: Stanford University)
[21] Hui A K, Armstrong B H, Wray A A 1978 J. Quant. Spectrosc. Radiat. Transfer 19 509Google Scholar
[22] 李宁, 翁春生 2011 物理学报 60 070701
Li N, Weng C S 2011 Acta Phys. Sin. 60 070701
[23] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏 2014 物理学报 63 083301Google Scholar
Lan L J, Ding Y J, Jia J W, Du Y J, Peng Z M 2014 Acta Phys. Sin. 63 083301Google Scholar
计量
- 文章访问数: 8392
- PDF下载量: 99
- 被引次数: 0