搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温高压下掺硼宝石级金刚石单晶生长特性的研究

肖宏宇 李尚升 秦玉琨 梁中翥 张永胜 张东梅 张义顺

引用本文:
Citation:

高温高压下掺硼宝石级金刚石单晶生长特性的研究

肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺

Studies on synthesis of boron-doped Gem-diamond single crystals under high temperature and high presure

Xiao Hong-Yu, Li Shang-Sheng, Qin Yu-Kun, Liang Zhong-Zhu, Zhang Yong-Sheng, Zhang Dong-Mei, Zhang Yi-Shun
PDF
导出引用
  • 本文在5.1–5.6 GPa,1230–1600℃的压力、温度条件下,以FeNiMnCo作为触媒,进行单质硼添加宝石级金刚石单晶的生长研究. 借助于有限元法,对触媒内的温度场进行模拟. 研究得到了FeNiMnCo-C-B体系下,金刚石单晶生长的P-T相图. 该体系下合成金刚石单晶的最低压力、温度条件分别为5.1 GPa,1230℃左右. 研究发现,在单晶同一{111}扇区内部,硼元素呈内多外少的分布规律. 有限元模拟结果给出,该分布规律是由在晶体生长过程中,{111}扇区的增长速度逐渐减小所致. {111}晶向的晶体生长实验结果表明,硼元素优先从{111}次扇区进入晶体. 研究发现,这是该扇区增长速度相对较快,硼元素扩散逃离可用时间短导致的. 另外,同磨料级掺硼金刚石单晶生长相比,对于温度梯度法生长掺硼宝石级金刚石单晶,由于晶体的增厚速度较慢,即使硼添加量相对较高,也可以实现表面无凹坑缺陷的优质金刚石单晶的生长.
    In this paper, by choosing catalyst of FeNiMnCo alloy, boron-doped diamond single crystals are synthesized under 5.1–5.6 GPa and 1230–1600℃; the temperature field is studied by finite element method (FEM). First, the P-T phase diagram for diamond single crystal growth, in the synthesis system of FeNiMnCo-C-B, is obtained, and the lowest synthesis conditions of 5.1 GPa and 1230℃ is found in the studies. By simulation with FEM, it is found that the content of boron element should be less and less in the growth of diamond single crystal in the {111} sector, and the reason is that the growth speed is reduced in the sectors. By growing diamond crystals with {111} faces, it is also found that the content of boron element in {111} secondary sector is greater than that in {111} primary sector, which is duo to the rapid growth of {111} secondary sector. Compared with the synthesis of diamond single crystal by film growth method, the diamond crystals thus obtained has no pits, the doping content of boron can be greater, and the diamond can be synthesized by temperature gradient method.
    • 基金项目: 国家自然科学基金青年科学基金(批准号:61007023)和河南省教育厅项目(批准号:13A140792,12A430010,13B140140)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61007023), and the Education Department of Henan Province, China (Grant Nos. 13A140792, 12A430010, 13B140140).
    [1]

    Sumiya H, Toda N, Nishibayashi Y, Satoh S 1997 Journal of Crystal Growth 178 485

    [2]

    Schein J, Campbell K M, Prasad R R, Prasad R R, Binder R, Krishnan M 2002 Review of Scientific Instruments 73 18

    [3]

    Yamamoto M, Kumasaka T, Ishikawa T 2000 Review of High Pressure Science and Technology 10 56

    [4]

    Sumiya H, Toda N, Satoh S 2002 Journal of Crystal Growth 237-239 1281

    [5]

    Kanda H 2001 Radiation Effects and Defects in Solids 156 163

    [6]

    El-Hajj H, Denisenko A, Kaiser A, Balmer R S, Kohn E 2008 Diamond and Related Materials 17 1259

    [7]

    Guy O J, Doneddu D, Lodzinski M, Igic P, Albery R, Wilks S, Twitchen D 2007 IDR. Industrial Diamond Review 3 65

    [8]

    Bundy F P, Bassett W A, Weathers M S, Hemley R J, Mao H U, Goncharov A F 1996 Carbon 34 14

    [9]

    Bormashov V S, Tarelkin S A, Buga S G, Kuznetsov M S, Terentiev S A, Semenov A N, Blank V D 2013 Diamond & Related Materials 35 19

    [10]

    Sun S S, Jia X P, Zhang Z F, Li Y, Yan B M, Liu X B, Ma H A 2013 Journal of Crystal Growth 377 22

    [11]

    Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103

    [12]

    Zhang N, Li M S, Zhang Y P, Tian B 2010 Journal of Synthetic Crystals 39 295(in Chinese) [张娜, 李木森, 张元培, 田斌 2010 人工晶体学报 39 295]

    [13]

    Bundy F P 1980 Journal of Geophysical Research: Solid Earth. 85 6930

    [14]

    Naka S, Horii K, Takeda Y, Hanawa T 1976 Nature 259 38

    [15]

    Sumiya H, Toda N, Satoh S 2005 Sei Technical Review-English Edition 60 10

    [16]

    Chen K, Zhang L, Zang C Y, Zheng X G, Zhu Y G 2013 Journal of Synthetic Crystals 39 324(in Chinese) [陈奎, 张莉, 臧传义, 郑喜贵, 朱永刚 2013 人工晶体学报 39 324]

    [17]

    Xu R W, Guo L X, Fan T Q 2013 Acta Phys. Sin. 62 170301(in Chinese) [徐润汶, 郭立新, 范天奇 2013 物理学报 62 170301]

    [18]

    Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702(in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 物理学报 61 040702]

    [19]

    Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701

    [20]

    Ding Z D, Peng L M, Shi C H 2011 Rock and Soil Mechanics 32 3387(in Chinese) [丁祖德, 彭立敏, 施成华 2011 岩土力学 32 3387]

    [21]

    Xiao H Y, Su J F, Zhang Y S, Bao Z G 2012 Acta Phys. Sin. 61 248101(in Chinese) [肖宏宇, 苏剑峰, 张永胜, 鲍志刚 2012 物理学报 61 248101]

    [22]

    Nazare M H, Neves A J 2001 Properties, Growth, and Applications of Diamond (EMIS Datareview series No. 26) (INSPEC: Institution of Electrical Engineers)

    [23]

    Nishi T, Shibata H, Ohta H, Waseda Y 2003 Met. Mat. Trans. A34A 2801

    [24]

    Taylor R E, Davis F E, Powell R W 1969 High Temperatures-High Pressures 1 663

    [25]

    Zang J Q 2008 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [张健琼2008博士学位论文(长春: 吉林大学)]

  • [1]

    Sumiya H, Toda N, Nishibayashi Y, Satoh S 1997 Journal of Crystal Growth 178 485

    [2]

    Schein J, Campbell K M, Prasad R R, Prasad R R, Binder R, Krishnan M 2002 Review of Scientific Instruments 73 18

    [3]

    Yamamoto M, Kumasaka T, Ishikawa T 2000 Review of High Pressure Science and Technology 10 56

    [4]

    Sumiya H, Toda N, Satoh S 2002 Journal of Crystal Growth 237-239 1281

    [5]

    Kanda H 2001 Radiation Effects and Defects in Solids 156 163

    [6]

    El-Hajj H, Denisenko A, Kaiser A, Balmer R S, Kohn E 2008 Diamond and Related Materials 17 1259

    [7]

    Guy O J, Doneddu D, Lodzinski M, Igic P, Albery R, Wilks S, Twitchen D 2007 IDR. Industrial Diamond Review 3 65

    [8]

    Bundy F P, Bassett W A, Weathers M S, Hemley R J, Mao H U, Goncharov A F 1996 Carbon 34 14

    [9]

    Bormashov V S, Tarelkin S A, Buga S G, Kuznetsov M S, Terentiev S A, Semenov A N, Blank V D 2013 Diamond & Related Materials 35 19

    [10]

    Sun S S, Jia X P, Zhang Z F, Li Y, Yan B M, Liu X B, Ma H A 2013 Journal of Crystal Growth 377 22

    [11]

    Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103

    [12]

    Zhang N, Li M S, Zhang Y P, Tian B 2010 Journal of Synthetic Crystals 39 295(in Chinese) [张娜, 李木森, 张元培, 田斌 2010 人工晶体学报 39 295]

    [13]

    Bundy F P 1980 Journal of Geophysical Research: Solid Earth. 85 6930

    [14]

    Naka S, Horii K, Takeda Y, Hanawa T 1976 Nature 259 38

    [15]

    Sumiya H, Toda N, Satoh S 2005 Sei Technical Review-English Edition 60 10

    [16]

    Chen K, Zhang L, Zang C Y, Zheng X G, Zhu Y G 2013 Journal of Synthetic Crystals 39 324(in Chinese) [陈奎, 张莉, 臧传义, 郑喜贵, 朱永刚 2013 人工晶体学报 39 324]

    [17]

    Xu R W, Guo L X, Fan T Q 2013 Acta Phys. Sin. 62 170301(in Chinese) [徐润汶, 郭立新, 范天奇 2013 物理学报 62 170301]

    [18]

    Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702(in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 物理学报 61 040702]

    [19]

    Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701

    [20]

    Ding Z D, Peng L M, Shi C H 2011 Rock and Soil Mechanics 32 3387(in Chinese) [丁祖德, 彭立敏, 施成华 2011 岩土力学 32 3387]

    [21]

    Xiao H Y, Su J F, Zhang Y S, Bao Z G 2012 Acta Phys. Sin. 61 248101(in Chinese) [肖宏宇, 苏剑峰, 张永胜, 鲍志刚 2012 物理学报 61 248101]

    [22]

    Nazare M H, Neves A J 2001 Properties, Growth, and Applications of Diamond (EMIS Datareview series No. 26) (INSPEC: Institution of Electrical Engineers)

    [23]

    Nishi T, Shibata H, Ohta H, Waseda Y 2003 Met. Mat. Trans. A34A 2801

    [24]

    Taylor R E, Davis F E, Powell R W 1969 High Temperatures-High Pressures 1 663

    [25]

    Zang J Q 2008 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [张健琼2008博士学位论文(长春: 吉林大学)]

  • [1] 杨功章, 谢雷, 陈喜平, 何瑞琦, 韩铁鑫, 牛国梁, 房雷鸣, 贺端威. 巴黎-爱丁堡压机中子衍射高压下温度加载实验. 物理学报, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
    [2] 申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣. 固体氧化物燃料电池温升模拟中入口异常高温度梯度研究. 物理学报, 2022, 71(16): 164401. doi: 10.7498/aps.71.20220031
    [3] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展. 物理学报, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [4] 王凯悦, 郭睿昂, 王宏兴. 金刚石氮-空位缺陷发光的温度依赖性. 物理学报, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [5] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法. 物理学报, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [6] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究. 物理学报, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [7] 肖宏宇, 秦玉琨, 刘利娜, 鲍志刚, 唐春娟, 孙瑞瑞, 张永胜, 李尚升, 贾晓鹏. 降温工艺对宝石级金刚石单晶品质的影响. 物理学报, 2018, 67(14): 140702. doi: 10.7498/aps.67.20180207
    [8] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇. Ib型金刚石大单晶的限形生长. 物理学报, 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [9] 刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力. 复合超硬材料的高压合成与研究. 物理学报, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [10] 刘宸, 孙宏祥, 袁寿其, 夏建平. 基于温度梯度分布的宽频带声聚焦效应. 物理学报, 2016, 65(4): 044303. doi: 10.7498/aps.65.044303
    [11] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [12] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性. 物理学报, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [13] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [14] 周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安. 锌添加对大尺寸金刚石生长的影响. 物理学报, 2014, 63(24): 248104. doi: 10.7498/aps.63.248104
    [15] 肖宏宇, 苏剑峰, 张永胜, 鲍志刚. 温度梯度法宝石级金刚石的合成及表征. 物理学报, 2012, 61(24): 248101. doi: 10.7498/aps.61.248101
    [16] 孟广为, 李敬宏, 裴文兵, 李双贵, 张维岩. 温度梯度对平面金壁发射能流平衡性的影响. 物理学报, 2011, 60(2): 025210. doi: 10.7498/aps.60.025210
    [17] 秦杰明, 张莹, 曹建明, 田立飞. 纯铁触媒合成磨料级金刚石及表征. 物理学报, 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [18] 陈曦, 王霞, 吴锴, 彭宗仁, 成永红. 温度梯度场对电声脉冲法空间电荷测量波形的影响. 物理学报, 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [19] 曹士英, 宋振明, 秦瑀, 王清月, 张志刚. 飞秒激光在不同位置温度梯度的惰性气体中成丝及光谱展宽的差异. 物理学报, 2009, 58(6): 3971-3976. doi: 10.7498/aps.58.3971
    [20] 文潮, 孙德玉, 李迅, 关锦清, 刘晓新, 林英睿, 唐仕英, 周刚, 林俊德, 金志浩. 炸药爆轰法制备纳米石墨粉及其在高压合成金刚石中的应用. 物理学报, 2004, 53(4): 1260-1264. doi: 10.7498/aps.53.1260
计量
  • 文章访问数:  3469
  • PDF下载量:  368
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-06
  • 修回日期:  2014-05-22
  • 刊出日期:  2014-10-05

高温高压下掺硼宝石级金刚石单晶生长特性的研究

  • 1. 河南理工大学材料学院, 焦作 454000;
  • 2. 洛阳理工学院数理部, 洛阳 471023;
  • 3. 中国科学院长春光学精密机械与物理研究所, 应用光学国家重点实验室, 长春 130033
    基金项目: 国家自然科学基金青年科学基金(批准号:61007023)和河南省教育厅项目(批准号:13A140792,12A430010,13B140140)资助的课题.

摘要: 本文在5.1–5.6 GPa,1230–1600℃的压力、温度条件下,以FeNiMnCo作为触媒,进行单质硼添加宝石级金刚石单晶的生长研究. 借助于有限元法,对触媒内的温度场进行模拟. 研究得到了FeNiMnCo-C-B体系下,金刚石单晶生长的P-T相图. 该体系下合成金刚石单晶的最低压力、温度条件分别为5.1 GPa,1230℃左右. 研究发现,在单晶同一{111}扇区内部,硼元素呈内多外少的分布规律. 有限元模拟结果给出,该分布规律是由在晶体生长过程中,{111}扇区的增长速度逐渐减小所致. {111}晶向的晶体生长实验结果表明,硼元素优先从{111}次扇区进入晶体. 研究发现,这是该扇区增长速度相对较快,硼元素扩散逃离可用时间短导致的. 另外,同磨料级掺硼金刚石单晶生长相比,对于温度梯度法生长掺硼宝石级金刚石单晶,由于晶体的增厚速度较慢,即使硼添加量相对较高,也可以实现表面无凹坑缺陷的优质金刚石单晶的生长.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回