搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B2S3对[111]晶向高压合成金刚石的影响

王帅 康如威 李勇 肖宏宇 王应 冉茂武 马红安

引用本文:
Citation:

B2S3对[111]晶向高压合成金刚石的影响

王帅, 康如威, 李勇, 肖宏宇, 王应, 冉茂武, 马红安
cstr: 32037.14.aps.74.20250028

Influence of B2S3 additive on [111]-oriented diamond crystal synthesized under high pressure condition

WANG Shuai, KANG Ruwei, LI Yong, XIAO Hongyu, WANG Ying, RAN Maowu, MA Hongan
cstr: 32037.14.aps.74.20250028
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 金刚石是一种用途极为广泛的极限功能材料, 本研究在6.5 GPa压力条件下, 利用温度梯度法研究了合成腔体中添加三硫化二硼(B2S3)时金刚石大单晶的合成. 随着B2S3的添加, 所合成金刚石的颜色由典型的黄色变为了浅蓝色, 而且金刚石的生长速率也随之降低. 拉曼(Raman)测试表明所制备样品为单一的sp3杂化金刚石相, 但对应的Raman特征峰均趋于向低波数移动. 借助傅里叶显微红外光谱(FTIR)测试结果, 分析发现金刚石内部氮杂质浓度逐渐降低. 此外, 利用霍尔效应测试表征了所合成金刚石的电输运性能, 结果表明B2S3可将(111)晶向金刚石电阻率降低至45.4 Ω·cm. 然而, 当合成体系中同时添加0.002 g B2S3和除氮剂时, 对应金刚石晶体的电阻率锐减至0.43 Ω·cm, 该研究为金刚石在半导体领域中的应用提供了重要的实验依据.
    Diamond is a kind of extremely functional material, which is widely used in the fields of industry, science and technology, military defense, medical and health, jewelry, and others. However, its application in the semiconductor field is still limited, because its electrical transport performance has not yet met the requirements of semiconductor devices. In order to improve the electrical transport performance of diamond as much as possible, the synthesis of diamond single crystal is studied by adding B2S3 to the synthesis system using temperature gradient growth (TGG) method at a pressure of 6.5 GPa in this work. The growth rate of the synthesized diamond crystal decreases from 2.19 mg/h to 1.26 mg/h, indicating that the growth rate of diamond is dependent not only on the growth driving force, but also on the impurity element in the synthetic cavity. Additionally, with the increase of additive dosage, the color of the synthesized diamond crystal changes from yellow to baby blue . Raman measurement results indicate that the obtained diamond appears as a single sp3 hybrid phase without the sp3 hybrid graphite phase. However, the corresponding Raman characteristic peak of the as-grown diamond crystal is located at about 1331 cm–1 and tends to move towards low wave number. According to Fourier Transform Infrared Spectrometer (FTIR) measurement results, the absorption peaks at 1130 cm–1 and 1344 cm–1 are attributed to nitrogen defects. It is found that the nitrogen defect concentration of the synthesized diamond crystal decreases gradually from about 300×10–6 to 60×10–6. Furthermore, the electrical transport performance of the synthesized diamond is characterized by Hall effect measurement. Diamond has insulating properties due to the absence of any additives in the synthetic cavity. However, the results indicate that when B2S3 is introduced into the synthetic system as additive, there is almost no difference in carrier Hall mobility, but the difference in carrier concentration is as high as two orders of magnitude. Furthermore, the resistivity of the synthesized [111]-oriented diamond crystal decreases to 45.4 Ω·cm, due to the addition of B2S3 to the synthesis system. However, it is worth noting that the resistivity of the diamond crystal synthesized with 0.002 g B2S3 and Ti/Cu additives in the synthesis system drops sharply to 0.43 Ω·cm. Therefore, the nitrogen defects in diamond will have an important effect on its conductivity. It provides an important experimental basis for applying diamond to semiconductor field.
      通信作者: 李勇, likaiyong6@163.com ; 马红安, maha@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12064038)、贵州省高层次创新型“百”层次人才(批准号: 黔科合平台人才-GCC[2023]087)和贵州省科技厅项目(批准号: 黔科合基础-ZK[2021]重点019, 黔科合基础-ZK[2023]一般467)资助的课题.
      Corresponding author: LI Yong, likaiyong6@163.com ; MA Hongan, maha@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12064038), the Foundation for Excellent Scholars of Guizhou Province, China (Grant No. GCC[2023]087), and the Science and Technology Department of Guizhou Province, China (Grant Nos. ZK[2021]021, ZK [2023] 467).
    [1]

    Bhattacharyya P, Chen W, Huang X, et al. 2024 Nature 627 73Google Scholar

    [2]

    Tong K, Zhang X, Li Z H, et al. 2024 Nature 626 79Google Scholar

    [3]

    Rodrigo M A, Canizares P, Carretero A S, Saez C 2010 Catal. Today 151 173Google Scholar

    [4]

    Zhang D X, Zhao Q, Zang J H, Lu Y J, Dong L, Shan C X 2018 Carbon 27 170

    [5]

    Huang G F, Jia X P, Li Y, Hu M H, Li Z C, Yan B M, Ma H A 2011 Chin. Phys. B 20 78103Google Scholar

    [6]

    Li Y, Chen X Z, Ran M W, She Y C, Xiao Z G, Hu M H, Wang Y, An J 2022 Chin. Phys. B 31 046107Google Scholar

    [7]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Fang C, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101Google Scholar

    [8]

    Li Y, Jia X P, Song M S, Ma H A, Z X, Fang C, Wang F B, Chen N, Wang Y 2015 Mod. Phys. Lett. B 29 1550162

    [9]

    Du J B, Liu H Z, Yang N, Chen X Z, Zong W J 2023 Appl. Surf. Sci. 637 157882Google Scholar

    [10]

    Li Y, Liao J H, Wang Y, She Y C, Xiao Z G, An J 2020 Opt. Mater. 101 109735Google Scholar

    [11]

    Song Y W, Fang C, Mu Y H, Li Y D, Shen W X, Zhang Z F, Zhang Y W, Qang Q Q, Wan B, Chen L C, Jia X P 2023 CrystEngComm 25 357Google Scholar

    [12]

    Ekimov E A, Sidorov1 V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D, Stishov1 S M 2004 Nature 428 542

    [13]

    Zhang J Q, Ma H A, Jiang Y P, Liang Z Z, Tian Y, Jia X P 2007 Diamond Relat. Mater. 16 283Google Scholar

    [14]

    肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升 2023 物理学报 72 020701Google Scholar

    Xiao H Y, Li Y, Bao Z G, She Y C, Wang Y, Li S S 2023 Acta Phys. Sin. 72 020701Google Scholar

    [15]

    Gheeraert E, Koizumi S, Teraj T, Kanda H, Nesladek M 2000 Diamond Relat. Mater. 9 948Google Scholar

    [16]

    Jackson K, Pederson M R, Harrison J G 1990 Phys. Rev. B 41 12641Google Scholar

    [17]

    Katayama-Yoshida H, Nishimatsu T, Yamamoto T, Orita N 2001 J. Phys. Conderns. Matter 13 8901Google Scholar

    [18]

    Liu X B, Chen X, Singh D J, Stern R A, Wu J S, Petitgrard S, Bina C R, Jacobsen S D 2019 PANS 116 7703Google Scholar

    [19]

    Hu X J, Li R B, Shen H S, Dai Y B, He X C 2014 Carbon 42 1501

    [20]

    Li Y, Jia X P, Ma H A, Zhang J, Wang F B, Chen N, Feng Y G 2014 CrystEngComm 16 7547Google Scholar

    [21]

    马利秋, 马红安, 肖宏宇, 李尚升, 李勇, 贾晓鹏 2010 科学通报 55 418

    Ma L Q, Ma H A, Xiao H Y, Li S S, Li Y, Jia X P 2010 Chin. Sci. Bull. 55 418

    [22]

    Li Y, Tan D B, Wang Q, Xiao Z G, Tian C H, Chen L 2020 Chin. Phys. B 29 098103Google Scholar

    [23]

    Liang Z Z, Jia X P, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932Google Scholar

    [24]

    Catledge S A, Vohra Y K, Ladi R, Rai G 1996 Diam. Relat. Mater. 5 1159Google Scholar

    [25]

    Li Y, Jia X P, Yan B M, Zhou Z X, Fang C, Zhang Z F, Sun S S, Ma H A 2012 J. Crys. Growth 359 49Google Scholar

  • 图 1  金刚石高温高压合成的组装剖面示意图 1, 导电钢帽; 2, 白云石; 3, 石墨管; 4, 叶蜡石; 5, 石墨; 6, 触媒; 7, 籽晶; 8, 绝缘材料

    Fig. 1.  Schematic diagram of the cell for diamond HPHT synthesis: 1, conductive ring; 2, dolomite; 3, graphite heater; 4, pyrophyllite; 5, carbon source; 6, catalyst; 7, seed crystal; 8, insulation materials.

    图 2  温度梯度产生示意图

    Fig. 2.  Schematic diagram of the temperature gradient generated.

    图 3  金刚石样品光学照片 (a) 无添加剂; (b)添加0.01 g B2S3; (c) 添加0.03 g B2S3; (d) 添加0.002 g B2S3+钛/铜

    Fig. 3.  Optical morphology of the synthesized diamond crystals: (a) Without any additive; (b) with 0.01 g B2S3 additive; (c) with 0.03 g B2S3 additive; (d) with 0.002 g B2S3 + Ti/Cu additives.

    图 4  金刚石晶体Raman光谱

    Fig. 4.  Raman spectra of the obtained diamond crystals.

    图 5  金刚石样品FTIR光谱

    Fig. 5.  FTIR spectra of the synthesized diamond crystals

    表 1  金刚石合成实验参数

    Table 1.  Experimental parameters for diamond synthesis.

    金刚石样品B2S3/g合成温度/℃生长时间/h形貌生长速率/(mg·h–1)
    1133021六八面体2.19
    20.01133021六八面体1.98
    30.03132521六八面体1.83
    40.002+Ti/Cu133521六八面体1.26
    下载: 导出CSV

    表 2  金刚石晶体Raman测试结果

    Table 2.  Raman measurement results of the synthesized diamond crystals.

    金刚石样品特征峰位/cm–1FWHM/cm–1内应力/MPa
    11330.95.3370382
    21330.95.3175382
    31131.05.4276347
    41330.45.2285555
    下载: 导出CSV

    表 3  金刚石电输运性能参数

    Table 3.  Electric transport performance parameters of the obtained diamond crystals.

    样品B2S3/
    g
    电阻率/
    (Ω·cm)
    载流子浓度/
    cm–3
    迁移率/
    (cm–2·v–1·s–1)
    类型
    1
    20.018.98×106.63×10141.05×102p
    30.034.54×102.81×10144.88×102p
    40.002+Ti/Cu4.33×10–13.39×10164.25×102p
    下载: 导出CSV
  • [1]

    Bhattacharyya P, Chen W, Huang X, et al. 2024 Nature 627 73Google Scholar

    [2]

    Tong K, Zhang X, Li Z H, et al. 2024 Nature 626 79Google Scholar

    [3]

    Rodrigo M A, Canizares P, Carretero A S, Saez C 2010 Catal. Today 151 173Google Scholar

    [4]

    Zhang D X, Zhao Q, Zang J H, Lu Y J, Dong L, Shan C X 2018 Carbon 27 170

    [5]

    Huang G F, Jia X P, Li Y, Hu M H, Li Z C, Yan B M, Ma H A 2011 Chin. Phys. B 20 78103Google Scholar

    [6]

    Li Y, Chen X Z, Ran M W, She Y C, Xiao Z G, Hu M H, Wang Y, An J 2022 Chin. Phys. B 31 046107Google Scholar

    [7]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Fang C, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101Google Scholar

    [8]

    Li Y, Jia X P, Song M S, Ma H A, Z X, Fang C, Wang F B, Chen N, Wang Y 2015 Mod. Phys. Lett. B 29 1550162

    [9]

    Du J B, Liu H Z, Yang N, Chen X Z, Zong W J 2023 Appl. Surf. Sci. 637 157882Google Scholar

    [10]

    Li Y, Liao J H, Wang Y, She Y C, Xiao Z G, An J 2020 Opt. Mater. 101 109735Google Scholar

    [11]

    Song Y W, Fang C, Mu Y H, Li Y D, Shen W X, Zhang Z F, Zhang Y W, Qang Q Q, Wan B, Chen L C, Jia X P 2023 CrystEngComm 25 357Google Scholar

    [12]

    Ekimov E A, Sidorov1 V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D, Stishov1 S M 2004 Nature 428 542

    [13]

    Zhang J Q, Ma H A, Jiang Y P, Liang Z Z, Tian Y, Jia X P 2007 Diamond Relat. Mater. 16 283Google Scholar

    [14]

    肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升 2023 物理学报 72 020701Google Scholar

    Xiao H Y, Li Y, Bao Z G, She Y C, Wang Y, Li S S 2023 Acta Phys. Sin. 72 020701Google Scholar

    [15]

    Gheeraert E, Koizumi S, Teraj T, Kanda H, Nesladek M 2000 Diamond Relat. Mater. 9 948Google Scholar

    [16]

    Jackson K, Pederson M R, Harrison J G 1990 Phys. Rev. B 41 12641Google Scholar

    [17]

    Katayama-Yoshida H, Nishimatsu T, Yamamoto T, Orita N 2001 J. Phys. Conderns. Matter 13 8901Google Scholar

    [18]

    Liu X B, Chen X, Singh D J, Stern R A, Wu J S, Petitgrard S, Bina C R, Jacobsen S D 2019 PANS 116 7703Google Scholar

    [19]

    Hu X J, Li R B, Shen H S, Dai Y B, He X C 2014 Carbon 42 1501

    [20]

    Li Y, Jia X P, Ma H A, Zhang J, Wang F B, Chen N, Feng Y G 2014 CrystEngComm 16 7547Google Scholar

    [21]

    马利秋, 马红安, 肖宏宇, 李尚升, 李勇, 贾晓鹏 2010 科学通报 55 418

    Ma L Q, Ma H A, Xiao H Y, Li S S, Li Y, Jia X P 2010 Chin. Sci. Bull. 55 418

    [22]

    Li Y, Tan D B, Wang Q, Xiao Z G, Tian C H, Chen L 2020 Chin. Phys. B 29 098103Google Scholar

    [23]

    Liang Z Z, Jia X P, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932Google Scholar

    [24]

    Catledge S A, Vohra Y K, Ladi R, Rai G 1996 Diam. Relat. Mater. 5 1159Google Scholar

    [25]

    Li Y, Jia X P, Yan B M, Zhou Z X, Fang C, Zhang Z F, Sun S S, Ma H A 2012 J. Crys. Growth 359 49Google Scholar

  • [1] 肖宏宇, 王帅, 康如威, 李勇, 李尚升, 田昌海, 王强, 金慧, 马红安. Li3N添加金刚石单晶的高温高压生长研究. 物理学报, 2025, 74(7): 070701. doi: 10.7498/aps.74.20241769
    [2] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [3] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展. 物理学报, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [4] 王凯悦, 郭睿昂, 王宏兴. 金刚石氮-空位缺陷发光的温度依赖性. 物理学报, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [5] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究. 物理学报, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [6] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇. Ib型金刚石大单晶的限形生长. 物理学报, 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [7] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究. 物理学报, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [8] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性. 物理学报, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [9] 刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力. 复合超硬材料的高压合成与研究. 物理学报, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [10] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性. 物理学报, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [11] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [12] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [13] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [14] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究. 物理学报, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [15] 田玉明, 王凯悦, 李志宏, 朱玉梅, 柴跃生, 曾雨顺, 王强. 高能电子照射对金刚石中缺陷电荷状态的影响. 物理学报, 2013, 62(18): 188101. doi: 10.7498/aps.62.188101
    [16] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开. 氮掺杂金刚石{100}晶面的缺陷发光特性. 物理学报, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [17] 秦杰明, 张莹, 曹建明, 田立飞. 纯铁触媒合成磨料级金刚石及表征. 物理学报, 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [18] 刘燕燕, E. Bauer-Grosse, 张庆瑜. 微波等离子体化学气相沉积合成掺氮金刚石薄膜的缺陷和结构特征及其生长行为. 物理学报, 2007, 56(4): 2359-2368. doi: 10.7498/aps.56.2359
    [19] 文潮, 孙德玉, 李迅, 关锦清, 刘晓新, 林英睿, 唐仕英, 周刚, 林俊德, 金志浩. 炸药爆轰法制备纳米石墨粉及其在高压合成金刚石中的应用. 物理学报, 2004, 53(4): 1260-1264. doi: 10.7498/aps.53.1260
    [20] 胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊. 掺杂金刚石薄膜的缺陷研究. 物理学报, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
计量
  • 文章访问数:  395
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-07
  • 修回日期:  2025-01-23
  • 上网日期:  2025-02-17

/

返回文章
返回