搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究

李勇 李宗宝 宋谋胜 王应 贾晓鹏 马红安

引用本文:
Citation:

硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究

李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安

Synthesis and electrical properties study of Ib type diamond single crystal co-doped with boron and hydrogen under HPHT conditions

Li Yong, Li Zong-Bao, Song Mou-Sheng, Wang Ying, Jia Xiao-Peng, Ma Hong-An
PDF
导出引用
  • 在压力6.0 GPa和温度1600 K条件下, 利用温度梯度法研究了(111)晶面硼氢协同掺杂Ib型金刚石的合成. 傅里叶红外光谱测试表明: 氢以sp3杂化的形式存在于所合成的金刚石中, 其对应的红外特征吸收峰位分别位于2850 cm-1和2920 cm-1处. 此外, 霍尔效应测试结果表明: 所合成的硼氢协同掺杂金刚石具有p型半导体材料特性. 相对于硼掺杂金刚石而言, 由于氢的引入导致硼氢协同掺杂金刚石电导率显著提高. 为了揭示硼氢协同掺杂金刚石电导率提高的原因, 对不同体系进行了第一性原理理论计算, 计算结果表明其与实验结果符合. 该研究对金刚石在半导体领域的应用有重要的现实意义.
    Diamond is well known for its excellent properties, such as its hardness, high thermal conductivity, high electron and hole mobility, high breakdown field strength and large band gap (5.4 eV), which has been extensively used in many fields. However, its application in semiconductor area needs to be further understood, because it is irreplaceable by conventional semiconductor materials, especially in the extreme working conditions. In order to obtain diamond semiconductor with excellent electrical performances, diamond crystals co-doped with boron (B) and hydrogen (H) are synthesized in an FeNi-C system by temperature gradient growth (TGG) at pressure 6.0 GPa and temperature 1600 K. Fourier infrared spectra (FTIR) measurements displayed that H is the formation of sp3 CH2-antisymmetric and sp3 -CH2-symmetric vibrations in the obtained diamond. Furthermore, the corresponding absorption peaks of H element are located at 2920 cm-1 and 2850 cm-1, respectively. Hall effects measurements demonstrated that the co-doped diamond exhibited that p- type material semiconductor performance, and the conductivity of the co-doped diamond is significantly enhanced comparing tocompared with the conductivity of the B-doping diamond. The results indicated that the Hall mobility mobilities is nearly equivalent between B-doped and co-doped diamond crystals are nearly equivalent, while the concentrations of the carriers and conductivity of the co-doped diamonds are higher than those of the B-doped diamond crystals. It is also noticed that the nitrogen concentration of the co-doped diamond decreases obviously, when the H and B are introduced into the diamond structure. Additionally, the change of the conductivity is investigated by first-principles calculation. In the B-doping diamond, two impurity levels are located in the forbidden band with small gaps. These impurity states above the Fermi level couldcan trap the photo-excited electrons, while those below Fermi level can trap the photo-excited vacancies, improving the transfer of the photo-excited carriers to the reactive sites. With the H co-doped diamond, the two impurity states moved to the valance band maximum and merged into each other, which extends the valance band and improves the charge transfer efficiency. From the perspective of energy band, for the co-doped of B and N atoms co-doped diamond, the impurity states are contributed by N/B-2p states while the overlop and splitting of N/B-2p in the band gap appeared. For the H co-doped diamond, the splitting of the N/B-2p states vanishes and shifts to the lower energy level, which was due to the fact that the excess charge transferred from N to H. The calculation results above are in qualitatively agreement with experimental results. We hope that this investigation would be meaningful for the application of diamond in semiconductor field.
      通信作者: 李宗宝, zongbaoli1982@163.com
    • 基金项目: 国家自然科学基金(批准号: 51172089)、贵州省教育厅自然科学基金重点项目(批准号: KY[2013]183) 和贵州省科技厅联合基金项目(批准号: LH[2015]7232, LH[2015]7233)资助的课题.
      Corresponding author: Li Zong-Bao, zongbaoli1982@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51172089), Natural Science Foundation of Guizhou Province Education Department, China (Grant No. KY[2013]183) and Natural Science Foundation of Guizhou Province Science and Technology Agency, China (Grant Nos. LH[2015]7232, LH[2015]7233).
    [1]

    Li L, Xu B, Li M S {2008 Chin. Sci. Bull. 53 937

    [2]

    Li Y, Feng Y G, Jin H, Jia X P, Ma H A {2015 J. Synthetic Crystal 44 2984 (in Chinese) [李勇, 冯云光, 金慧, 贾晓鹏, 马红安 2015 人工晶体学报 44 2984]

    [3]

    Fang C, Jia X P, Chen N, Zhou Z X, Li Y D, Li Y, Ma H A 2015 Acta Phys. Sin. 64 128101 (in Chinese) [房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安 2015 物理学报 64 128101]

    [4]

    Li Y, Zhou Z X, Guan X M, Li S S, Wang Y, Jia X P, Ma H A 2016 Chin. Phys. Lett. 33 028101

    [5]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A {2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101]

    [6]

    Li Y, Jia X P, Song M S, Ma H A, Zhou Z X, Fang C, Wang F B, Chen N, Wang Y {2015 Modern Phys. Lett. B 29 1550162

    [7]

    Kalish R, Reznik A, Uzan-Saguy C, Cytermann C 2000 Appl. Phys. Lett. 76 757

    [8]

    Miyazaki T, Okushi H 2002 Diamond Relat. Mater. 11 323

    [9]

    Chrenko R M 1973 Phys. Rev. B: Solid State 7 4560

    [10]

    Ma Y M, Tse John S, Cui T, Klug Dennis D, Zhang L J, Xie Y, Niu Y L, Zou G T 2005 Phys. Rev. B: Condens. Matter 72 014306

    [11]

    Ekimov E A, Sidorov1 V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D, Stishov1 S M 2004 Nature 428 542

    [12]

    Zhang J Q, Ma H A, Jiang Y P, Liang Z Z, Tian Y, Jia X 2007 Diamond Relat. Mater. 16 283

    [13]

    Katayama Yoshida H, Nishimatsu T, Yamamoto T, Orita N {2001 J. Phys. Conderns. Matter 13 890

    [14]

    Chevallier J, Theys B, Lussonand A, Grattepain C, Deneuville A, Geeraert E 1998 Phys. Rev. B: Condens. Matter. Phys. 58 7966

    [15]

    Lombardi E B, Mainwood A, Osuch K 2003 Diamond Relat. Mater. 12 490

    [16]

    Zou Y G, Liu B B, Yao M G, Hou Y Y, Wang L, Yu S D, Wang P, Cui T, Zou G T, Sundqvist B, Wang G R, Liu Y C 2007 Acta Phys. Sin. 56 5172 (in Chinese) [邹永刚, 刘冰冰, 姚明光, 侯元元, 王霖, 于世丹, 王鹏, 崔田, 邹广田, Sundqvist B, 王国瑞, 刘益春 2007 物理学报 56 5172]

    [17]

    Coudberg P, Catherine Y 1987 Thin Solid Films 146 93

    [18]

    Mcnamara K M, Williams B E, Gleason K K, Scruggs B E 1994 J. Appl. Phys. 76 2466

    [19]

    Field J E 1992 The Properties of Natural and Synthetic Diamond vol. 36-41 (London: Academic) p81

    [20]

    Liang Z Z, Jia X P, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932

    [21]

    Ma L Q, Ma H A, Xiao H Y, Li S S, Li Y, Jia X P 2010 Chin. Sci. Bull. 55 677

    [22]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

  • [1]

    Li L, Xu B, Li M S {2008 Chin. Sci. Bull. 53 937

    [2]

    Li Y, Feng Y G, Jin H, Jia X P, Ma H A {2015 J. Synthetic Crystal 44 2984 (in Chinese) [李勇, 冯云光, 金慧, 贾晓鹏, 马红安 2015 人工晶体学报 44 2984]

    [3]

    Fang C, Jia X P, Chen N, Zhou Z X, Li Y D, Li Y, Ma H A 2015 Acta Phys. Sin. 64 128101 (in Chinese) [房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安 2015 物理学报 64 128101]

    [4]

    Li Y, Zhou Z X, Guan X M, Li S S, Wang Y, Jia X P, Ma H A 2016 Chin. Phys. Lett. 33 028101

    [5]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A {2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101]

    [6]

    Li Y, Jia X P, Song M S, Ma H A, Zhou Z X, Fang C, Wang F B, Chen N, Wang Y {2015 Modern Phys. Lett. B 29 1550162

    [7]

    Kalish R, Reznik A, Uzan-Saguy C, Cytermann C 2000 Appl. Phys. Lett. 76 757

    [8]

    Miyazaki T, Okushi H 2002 Diamond Relat. Mater. 11 323

    [9]

    Chrenko R M 1973 Phys. Rev. B: Solid State 7 4560

    [10]

    Ma Y M, Tse John S, Cui T, Klug Dennis D, Zhang L J, Xie Y, Niu Y L, Zou G T 2005 Phys. Rev. B: Condens. Matter 72 014306

    [11]

    Ekimov E A, Sidorov1 V A, Bauer E D, Mel'nik N N, Curro N J, Thompson J D, Stishov1 S M 2004 Nature 428 542

    [12]

    Zhang J Q, Ma H A, Jiang Y P, Liang Z Z, Tian Y, Jia X 2007 Diamond Relat. Mater. 16 283

    [13]

    Katayama Yoshida H, Nishimatsu T, Yamamoto T, Orita N {2001 J. Phys. Conderns. Matter 13 890

    [14]

    Chevallier J, Theys B, Lussonand A, Grattepain C, Deneuville A, Geeraert E 1998 Phys. Rev. B: Condens. Matter. Phys. 58 7966

    [15]

    Lombardi E B, Mainwood A, Osuch K 2003 Diamond Relat. Mater. 12 490

    [16]

    Zou Y G, Liu B B, Yao M G, Hou Y Y, Wang L, Yu S D, Wang P, Cui T, Zou G T, Sundqvist B, Wang G R, Liu Y C 2007 Acta Phys. Sin. 56 5172 (in Chinese) [邹永刚, 刘冰冰, 姚明光, 侯元元, 王霖, 于世丹, 王鹏, 崔田, 邹广田, Sundqvist B, 王国瑞, 刘益春 2007 物理学报 56 5172]

    [17]

    Coudberg P, Catherine Y 1987 Thin Solid Films 146 93

    [18]

    Mcnamara K M, Williams B E, Gleason K K, Scruggs B E 1994 J. Appl. Phys. 76 2466

    [19]

    Field J E 1992 The Properties of Natural and Synthetic Diamond vol. 36-41 (London: Academic) p81

    [20]

    Liang Z Z, Jia X P, Ma H A, Zang C Y, Zhu P W, Guan Q F, Kanda H 2005 Diamond Relat. Mater. 14 1932

    [21]

    Ma L Q, Ma H A, Xiao H Y, Li S S, Li Y, Jia X P 2010 Chin. Sci. Bull. 55 677

    [22]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

  • [1] 赵永生, 阎峰云, 刘雪. 掺杂B, Cr, Mo, Ti, W, Zr后金刚石中正电子湮灭寿命计算. 物理学报, 2024, 73(1): 017802. doi: 10.7498/aps.73.20231269
    [2] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [3] 李高芳, 殷文, 黄敬国, 崔昊杨, 叶焓静, 高艳卿, 黄志明, 褚君浩. 太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性. 物理学报, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [4] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展. 物理学报, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [5] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究. 物理学报, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [6] 刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力. 复合超硬材料的高压合成与研究. 物理学报, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [7] 王应, 李勇, 李宗宝. B,N协同掺杂金刚石电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(8): 087101. doi: 10.7498/aps.65.087101
    [8] 肖宏宇, 刘利娜, 秦玉琨, 张东梅, 张永胜, 隋永明, 梁中翥. B2O3添加宝石级金刚石单晶的生长特性. 物理学报, 2016, 65(5): 050701. doi: 10.7498/aps.65.050701
    [9] 房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安. 添加Fe(C5H5)2合成氢掺杂金刚石大单晶及其表征. 物理学报, 2015, 64(12): 128101. doi: 10.7498/aps.64.128101
    [10] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [11] 颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安. 氮氢共掺杂金刚石中氢的典型红外特征峰的表征. 物理学报, 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [12] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究. 物理学报, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [13] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开. 氮掺杂金刚石{100}晶面的缺陷发光特性. 物理学报, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [14] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究. 物理学报, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [15] 秦杰明, 张莹, 曹建明, 田立飞. 纯铁触媒合成磨料级金刚石及表征. 物理学报, 2011, 60(5): 058102. doi: 10.7498/aps.60.058102
    [16] 李荣斌. 同质与异质外延掺杂CVD金刚石薄膜的结构与性能. 物理学报, 2009, 58(2): 1287-1292. doi: 10.7498/aps.58.1287
    [17] 檀满林, 朱嘉琦, 张化宇, 朱振业, 韩杰才. 硼掺杂对四面体非晶碳膜电导性能的影响. 物理学报, 2008, 57(10): 6551-6556. doi: 10.7498/aps.57.6551
    [18] 杨凤霞, 张端明, 邓宗伟, 姜胜林, 徐 洁, 李舒丹. 基体电导率对0-3型铁电复合材料高压极化行为及损耗的影响. 物理学报, 2008, 57(6): 3840-3845. doi: 10.7498/aps.57.3840
    [19] 文潮, 孙德玉, 李迅, 关锦清, 刘晓新, 林英睿, 唐仕英, 周刚, 林俊德, 金志浩. 炸药爆轰法制备纳米石墨粉及其在高压合成金刚石中的应用. 物理学报, 2004, 53(4): 1260-1264. doi: 10.7498/aps.53.1260
    [20] 胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊. 掺杂金刚石薄膜的缺陷研究. 物理学报, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
计量
  • 文章访问数:  6671
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-17
  • 修回日期:  2016-03-09
  • 刊出日期:  2016-06-05

/

返回文章
返回