搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TDLAS技术的水汽低温吸收光谱参数测量

聂伟 阚瑞峰 许振宇 姚路 夏晖晖 彭于权 张步强 何亚柏

引用本文:
Citation:

基于TDLAS技术的水汽低温吸收光谱参数测量

聂伟, 阚瑞峰, 许振宇, 姚路, 夏晖晖, 彭于权, 张步强, 何亚柏

Measuring spectral parameters of water vapor at low temperature based on tunable diode laser absorption spectroscopy

Nie Wei, Kan Rui-Feng, Xu Zhen-Yu, Yao Lu, Xia Hui-Hui, Peng Yu-Quan, Zhang Bu-Qiang, He Ya-Bai
PDF
导出引用
  • 精确的气体光谱参数对气体浓度、温度等的光谱精确反演测量具有十分重要的意义,针对当前主流光谱数据库(例如HITRAN)中数据与实际数值存在相当误差的问题,自主研制了一套基于静态冷却技术的低温光谱实验平台,用于精确测量低温下的气体吸收光谱参数.运用该低温光谱实验平台,采用可调谐二极管激光吸收光谱(TDLAS)技术测量了温度为230340 K、压强为101000 Pa时72407246 cm-1波段的纯水汽振转跃迁光谱.采用Voigt线型多峰拟合方法,获得了5条水汽振转跃迁谱在不同温度、不同压强下的积分吸光度值及洛伦兹展宽值,运用线性拟合的方法得到这5条吸收线的自展宽半峰全宽系数及参考温度下的线强值.运用不确定度传递公式,计算得到实验结果的不确定度,与HITRAN2012数据库中的线参数进行对比,所测的5条吸收线中实验结果与数据库值最大相差10.96%,且实验结果的不确定度为1.11%2.98%(置信概率p=95%,包含因子k=2),小于HITRAN2012数据库值的不确定度.
    Accurate and reliable spectral line parameters of gas are very important for measuring gas concentration and temperature.The mainstream spectrum database (e.g.HITRAN) includes the values from theoretical computation based on different models,which have some inevitable deviations from the corresponding actual values.To address this problem,we develop a low-temperature spectral experimental platform for simulating low temperature and low pressure environment so as to accurately measure gas absorption spectral parameters.The spectral experimental platform uses the static cooling technology combined with the Dewar insulation system to maintain the quartz cell at a constant temperature.Through adjusting the electric heating and liquid helium refrigeration,we can achieve temperature change and stability.Temperature of the low temperature absorption cell can be adjusted in a range of 100-350 K with a precision lower than 0.3 K and the temperature gradient in the cell is lower than 0.01 K/cm.The length of quartz cell is 100 cm,and a reflector can be used to increase optical path for absorption.The window diameter is 76 mm,and the spectral resolution is better than 0.001 cm-1.We use a tunable diode laser spectrometer to measure absorption spectra of pure water vapor with the platform at different temperatures (230-340 K) and different pressures (10-1000 Pa).Voigt profile is the leastsquares fit to the measured spectra by using a multi-spectrum fitting routine.A filter is used to reduce electronic noise of detector signal.As spectral lines in the band of 7240-7246 cm-1 are often used in low temperature wind tunnel flow field measurements,a distributed feedback (DFB) diode laser with a wavelength of 1381 nm is used in the experiment, and five water vapor lines are selected and measured.Firstly,from the linear fitting of line area and the full width at half maximum of collisional broadening (or pressure broadening) we obtain line strengths and self-broadening half-width coefficients at different temperatures.Secondly,from nonlinear fitting of line strengths and self-broadening half-width coefficients at different temperatures we obtain the values of line strengths and self-broadening half-width coefficients at the reference temperature (296 K).In the end,comparison between our experimental results and HITRAN2012 database values shows that the maximum discrepancy between the HITRAN database and the experimental result is 10.96%.A transparent uncertainty analysis is given for the measurement values.Uncertainties of our measured line strengths are in a 1.11%-2.98% range (95% confidence level,k=2),which is smaller than those of HITRAN2012 database values (uncertainties are in a range of 5%-10%).The accurate spectral parameters are obtained experimentally,and of great significance for improving the spectrum measurement accuracy of water vapor in low temperature environment in the future.
      通信作者: 阚瑞峰, kanruifeng@aiofm.ac.cn;zyxu@aiofm.ac.cn ; 许振宇, kanruifeng@aiofm.ac.cn;zyxu@aiofm.ac.cn
    • 基金项目: 国家重大科学仪器设备开发专项(批准号:2014YQ060537)资助的课题.
      Corresponding author: Kan Rui-Feng, kanruifeng@aiofm.ac.cn;zyxu@aiofm.ac.cn ; Xu Zhen-Yu, kanruifeng@aiofm.ac.cn;zyxu@aiofm.ac.cn
    • Funds: Project supported by the National Major Scientific Instrument and Equipment Development Project of China (Grant No. 2014YQ060537).
    [1]

    Kiehl J T, Trenberth K E 1997 B. Am. Meteorol. Soc. 78 197

    [2]

    Maycock A C, Shine K P, Joshi M M 2011 Q. J. Roy. Meteotol. Soc. 137 1070

    [3]

    Ravishankara A R 2012 Science 337 809

    [4]

    Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert-Witzel V 2012 Appl. Phys. B 109 521

    [5]

    Gallegos J G, Benyon R, Avila S, Benito A, Gavioso R M, Mitter H, Bell S, Stevens M, Bse N, Ebert V, Heinonen M, Sairanen H, Peruzzi A, Bosma R, Val' kov M 2015 J. Nat. Gas Sci. Eng. 23 407

    [6]

    Buchholz B, Afchine A, Klein A, Schiller C, Krmer M, Ebert V 2017 Atmos. Meas. Tech. 10 35

    [7]

    Mohamed A, Rosier B, Henry D, Louvet Y, Varghese P L 1996 AIAA J. 34 494

    [8]

    Albert S, Bauerecker S, Boudon V, Brown L R, Champion J P, Lote M 2009 Chem. Phys. 356 131

    [9]

    Gao W, Wang G S, Chen W D, Zhang W J, Gao X M 2011 Spectroscopy and Spectral Analysis 31 3180 (in Chinese)[高伟, 王贵师, 陈卫东, 张为俊, 高晓明2011光谱学与光谱分析31 3180]

    [10]

    Vallon R, Soutade J, Verant J L, Meyers J, Paris S, Mohamed A 2010 Sensors 10 6081

    [11]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Chris Benner D, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Mller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4

    [12]

    Chen J Y, Liu J G, He Y B, Wang L, Jiang Q, Xu Z Y, Yao L, Yuan S, Ruan J, He J F, Dai Y H, Kan R F 2013 Acta Phys. Sin. 62 224206 (in Chinese)[陈玖英, 刘建国, 何亚柏, 王辽, 江强, 许振宇, 姚路, 袁松, 阮俊, 何俊锋, 戴云海, 阚瑞峰2013物理学报62 224206]

    [13]

    Goldenstein C S, Jeffries J B, Hanson R K 2013 J. Quant. Spectrosc. Radiat. Transfer 130 100

    [14]

    Pogny A, Klein A, Ebert V 2015 J. Quant. Spectrosc. Radiat. Transfer 165 108

    [15]

    Ngo N H, Ibrahim N, Landsheere X, Tran H, Chelin P, Schwell M, Hartmann J M 2012 J. Quant. Spectrosc. Radiat. Transfer 113 870

    [16]

    Liu X, Jeffries J B, Hanson R K 2007 Meas. Sci. Technol. 18 1185

    [17]

    Ptashnik I V, Smith K M, Shine K P 2005 J. Mol. Spectrosc. 232 186

    [18]

    Zhang G L, Liu J G, Kan R F, Xu Z Y 2014 Chin. Phys. B 23 124207

  • [1]

    Kiehl J T, Trenberth K E 1997 B. Am. Meteorol. Soc. 78 197

    [2]

    Maycock A C, Shine K P, Joshi M M 2011 Q. J. Roy. Meteotol. Soc. 137 1070

    [3]

    Ravishankara A R 2012 Science 337 809

    [4]

    Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert-Witzel V 2012 Appl. Phys. B 109 521

    [5]

    Gallegos J G, Benyon R, Avila S, Benito A, Gavioso R M, Mitter H, Bell S, Stevens M, Bse N, Ebert V, Heinonen M, Sairanen H, Peruzzi A, Bosma R, Val' kov M 2015 J. Nat. Gas Sci. Eng. 23 407

    [6]

    Buchholz B, Afchine A, Klein A, Schiller C, Krmer M, Ebert V 2017 Atmos. Meas. Tech. 10 35

    [7]

    Mohamed A, Rosier B, Henry D, Louvet Y, Varghese P L 1996 AIAA J. 34 494

    [8]

    Albert S, Bauerecker S, Boudon V, Brown L R, Champion J P, Lote M 2009 Chem. Phys. 356 131

    [9]

    Gao W, Wang G S, Chen W D, Zhang W J, Gao X M 2011 Spectroscopy and Spectral Analysis 31 3180 (in Chinese)[高伟, 王贵师, 陈卫东, 张为俊, 高晓明2011光谱学与光谱分析31 3180]

    [10]

    Vallon R, Soutade J, Verant J L, Meyers J, Paris S, Mohamed A 2010 Sensors 10 6081

    [11]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Chris Benner D, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Mller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4

    [12]

    Chen J Y, Liu J G, He Y B, Wang L, Jiang Q, Xu Z Y, Yao L, Yuan S, Ruan J, He J F, Dai Y H, Kan R F 2013 Acta Phys. Sin. 62 224206 (in Chinese)[陈玖英, 刘建国, 何亚柏, 王辽, 江强, 许振宇, 姚路, 袁松, 阮俊, 何俊锋, 戴云海, 阚瑞峰2013物理学报62 224206]

    [13]

    Goldenstein C S, Jeffries J B, Hanson R K 2013 J. Quant. Spectrosc. Radiat. Transfer 130 100

    [14]

    Pogny A, Klein A, Ebert V 2015 J. Quant. Spectrosc. Radiat. Transfer 165 108

    [15]

    Ngo N H, Ibrahim N, Landsheere X, Tran H, Chelin P, Schwell M, Hartmann J M 2012 J. Quant. Spectrosc. Radiat. Transfer 113 870

    [16]

    Liu X, Jeffries J B, Hanson R K 2007 Meas. Sci. Technol. 18 1185

    [17]

    Ptashnik I V, Smith K M, Shine K P 2005 J. Mol. Spectrosc. 232 186

    [18]

    Zhang G L, Liu J G, Kan R F, Xu Z Y 2014 Chin. Phys. B 23 124207

  • [1] 龙江雄, 邵立, 张玉钧, 尤坤, 何莹, 叶庆, 孙晓泉. 4296—4302 cm–1范围内氨气光谱线强与自展宽系数测量研究. 物理学报, 2022, 71(16): 164204. doi: 10.7498/aps.71.20220504
    [2] 李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清. 基于连续量子级联激光器的1103.4 cm–1处NH3混叠吸收光谱特性研究. 物理学报, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [3] 聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹. 66116618 cm-1之间氨气光谱线强的测量. 物理学报, 2017, 66(5): 054207. doi: 10.7498/aps.66.054207
    [4] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究. 物理学报, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [5] 高进云, 张庆礼, 王小飞, 刘文鹏, 孙贵华, 孙敦陆, 殷绍唐. Nd3+掺杂GdTaO4的吸收光谱分析和晶场计算. 物理学报, 2015, 64(12): 124209. doi: 10.7498/aps.64.124209
    [6] 侯清玉, 吕致远, 赵春旺. V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究. 物理学报, 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [7] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [8] 毛斐, 侯清玉, 赵春旺, 郭少强. Pr高掺杂浓度对锐钛矿TiO2的带隙和吸收光谱影响的研究. 物理学报, 2014, 63(5): 057103. doi: 10.7498/aps.63.057103
    [9] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究. 物理学报, 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [10] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究. 物理学报, 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [11] 陈玖英, 刘建国, 何亚柏, 王辽, 冮强, 许振宇, 姚路, 袁松, 阮俊, 何俊峰, 戴云海, 阚瑞峰. 2.0 μm处CO2高温谱线参数测量研究. 物理学报, 2013, 62(22): 224206. doi: 10.7498/aps.62.224206
    [12] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [13] 吕晓静, 翁春生, 李宁. 高压环境下1.58 μm波段CO2吸收光谱特性分析. 物理学报, 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [14] 吴叶青, 苏良碧, 徐军, 陈红兵, 李红军, 郑丽和, 王庆国. Yb:CaF2-SrF2激光晶体光谱性能以及热学性能的研究. 物理学报, 2012, 61(17): 177801. doi: 10.7498/aps.61.177801
    [15] 王晓波, 马维光, 王晶晶, 肖连团, 贾锁堂. 单光子波长调制吸收光谱用于1.5 m激光器的波长锁定. 物理学报, 2012, 61(10): 104205. doi: 10.7498/aps.61.104205
    [16] 许振宇, 刘文清, 刘建国, 何俊峰, 姚路, 阮俊, 陈玖英, 李晗, 袁松, 耿辉, 阚瑞峰. 基于可调谐半导体激光器吸收光谱的温度测量方法研究. 物理学报, 2012, 61(23): 234204. doi: 10.7498/aps.61.234204
    [17] 李宁, 翁春生. 非标定波长调制吸收光谱气体测量研究. 物理学报, 2011, 60(7): 070701. doi: 10.7498/aps.60.070701
    [18] 徐凌, 唐超群, 钱俊. C掺杂锐钛矿相TiO2吸收光谱的第一性原理研究. 物理学报, 2010, 59(4): 2721-2727. doi: 10.7498/aps.59.2721
    [19] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究. 物理学报, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [20] 王 策, 陈晓波, 张春林, 张蕴芝, 陈 鸾, 马 辉, 李 崧, 高爱华. Er3+:GdVO4中Er3+离子的光谱参数计算和晶场中能级分裂的讨论. 物理学报, 2007, 56(10): 6090-6097. doi: 10.7498/aps.56.6090
计量
  • 文章访问数:  7566
  • PDF下载量:  287
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-08
  • 修回日期:  2017-06-05
  • 刊出日期:  2017-10-05

/

返回文章
返回