搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究

郭少强 侯清玉 赵春旺 毛斐

引用本文:
Citation:

V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究

郭少强, 侯清玉, 赵春旺, 毛斐

First principles study of the effect of high V doping on the optical band gap and absorption spectrum of ZnO

Guo Shao-Qiang, Hou Qing-Yu, Zhao Chun-Wang, Mao Fei
PDF
导出引用
  • 对于V高掺杂ZnO,当摩尔分数为0.0417–0.0625时,随着掺杂量的增加,吸收光谱出现蓝移减弱和蓝移增强两种不同实验结果均有文献报道. 采用密度泛函理论的第一性原理平面波超软赝势方法,构建未掺杂ZnO单胞模型、V高掺杂Zn1-xVxO(x=0.0417,0.0625)两种超胞模型,采用GGA+U 方法计算掺杂前后体系的形成能、态密度、分波态密度、磁性和吸收光谱. 结果表明,当V 的掺杂量(原子含量)为2.083%–3.125%时,随着V掺杂量增加,掺杂体系磁矩增大,磁性增强,并且掺杂体系体积增加,总能量下降,形成能减小,掺杂体系更稳定,同时,掺杂ZnO体系的最小光学带隙增宽,吸收带边向低能级方向移动. 上述计算结果与实验结果一致.
    Nowadays, the studies on optical band gap and absorption spectrum of V doped ZnO have presented two distinctly different experimental results, that is, the blue shift increases and decreases when the mole fraction of impurity increases in a range from 0.0417 to 0.0625. To solve this contradiction, according to the first-principles plane-wave ultrasoft pseudopotential of the density functional theory, we set up models for a pure ZnO cell and two supercells of Zn1-xVxO (x=0.0417, 0.0625) to calculate the total density of state, partial density of state, magnetism and absorption spectrum through using the method of GGA+U. The calculation results indicate that with the doping amount increasing from 2.083 at% to 3.125 at%, the magnetic moment of doping system increases and magnetism augments, too. Moreover, the volume of doping system increases, the total energy decreases and the formation energy becomes lower, thereby making the system more stable. Meanwhile, its optical band gap becomes wider, and the absorption spectrum shifts toward low energy. The calculation results are consistent with the experimental data.
    • 基金项目: 国家自然科学基金(批准号:61366008,51261017)、教育部“春晖”计划和内蒙古自治区高等学校科学研究计划(批准号:NJZZ13099)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 51261017), the “Chunhui” Program of Ministry of Education, China, and the Scientific Research Program of Institution of Higher Education of Inner Mongolia Autonomous Region, China (Grant No. NJZZ13099).
    [1]

    Srikant V, Clarke D R 1998 J. Appl. Phys. 83 5447

    [2]

    Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y 1988 Appl. Phy. Lett. 72 3270

    [3]

    Guang L, Li Q, Zhao Q X, Guo J X, Zhou Y, Jin L T, Geng B, Liu B T 2009 Acta Phys. Sin. 58 5624 (in Chinese) [关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭 2009 物理学报 58 5624]

    [4]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 物理学报 59 4925]

    [5]

    Li H L, Zhang Z, L Y B, Huang J Z, Zhang Y, Liu R X 2013 Acta Phys. Sin. 62 047101 (in Chinese) [李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜 2013 物理学报 62 047101]

    [6]

    Thienprasert J T, Rujirawat S, Klysubun W, Duenow J N, Coutts T J, Zhang S B, Look D C, Limpijumnong S 2013 Phys. Rev. Lett. 110 055502

    [7]

    Lin Y C, Chang C H, Shen C H, Wang P W, Lee Y C 2010 Thin Solid Films 518 6055

    [8]

    Krithiga R, Chandrasekaran G 2009 J. Cryst. Growth 311 4610

    [9]

    Mhamdi A, Boukhachem A, Madani M, Lachheb H, Boubaker K, Amlouk A, Amlouk M 2013 Optik 124 3764

    [10]

    Tahir N, Hussain S T, Usman M, Hasanain S K, Mumtaz A 2009 Appl. Surf. Sci. 255 8506

    [11]

    Singh S, Rao M S R 2009 Phys. Rev. B 80 045210

    [12]

    Wang Q B, Zhou C, Wu J, L T 2013 Opt. Commun. 297 79

    [13]

    Hou Q Y, Dong H Y, Ma W, Zhao C W 2013 Acta Phys. Sin. 62 157101 (in Chinese) [侯清玉, 董红英, 马文, 赵春旺 2013 物理学报 62 157101]

    [14]

    Hu C E, Zeng Z Y, Cheng Y, Chen X R, Cai L C 2008 Chin. Phys. B 17 3867

    [15]

    Gui Q F, Cui L, Pan J, Hu J G 2013 Acta Phys. Sin. 62 087103 (in Chinese) [桂青凤, 崔 磊, 潘靖, 胡经国 2013 物理学报 62 087103]

    [16]

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Chin. Phys. Lett. 26 016105

    [17]

    El Mir L, Ghribi F, Hajiri M, Ben Ayadi Z, Diessas K, Cubukcu M, von Bardeleben H J 2011 Thin Solid Films 519 5787

    [18]

    Wang L W, Meng L J, Teixeira V, Song S G, Xu Z, Xu X R 2009 Thin Solid Films 517 3721

    [19]

    Luo J T, Zhu X Y, Fan B, Zeng F, Pan F 2009 J. Phys. D 42 115109

    [20]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [21]

    Ska K Z 2001 Thin Solid Films 391 229

    [22]

    Yan Y, AL-Jassim M M 2004 Phys. Rev. B 69 085204

    [23]

    Wu L, Hou T J, Wang Y, Zhao Y F, Guo Z Y, Li Y Y, Lee S T 2012 J. Alloys Compd. 541 250

    [24]

    García A G, Pérez W L, Hernádez R G 2013 Solid State Commun. 64 68

    [25]

    Dunne P, Uhlemann M, Gebert A, Schultz L 2012 ECS Transactions 45 97

    [26]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [27]

    Vogel D, Krger P, Pollmann J 1995 Phys. Rev. B 52 R14316

    [28]

    Karamat S, Rawat R S, Lee P, Tan T L, Ramanujan R V, Zhou W 2010 Appl. Surf. Sci. 256 2309

    [29]

    Sorescu M, Diamandescu L, Tarabsanu-Mihaila D, Teodorescuv V S 2004 J. Mater. Sci. 39 675

    [30]

    Wei L 2007 M. S. Dissertation (Kaifeng: Henan University) p64 (in Chinese) [魏凌 2007 硕士学位论文 (开封: 河南大学) 第64页]

    [31]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [32]

    Mulliken R S 1995 J. Chem. Phys. 23 1833

    [33]

    Huang K 2008 Solid State. Phys. (Beijing: Higher Education Press) pp422-426 (in Chinese) [黄昆 2008 固体物理学(北京: 高等教育出版社)第422–第426页]

    [34]

    Wang Q, Sun Q, Puru J, Zheng H, Note R, Kawazoe Y 2007 Appl. Phys. Lett. 91 063116

  • [1]

    Srikant V, Clarke D R 1998 J. Appl. Phys. 83 5447

    [2]

    Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y 1988 Appl. Phy. Lett. 72 3270

    [3]

    Guang L, Li Q, Zhao Q X, Guo J X, Zhou Y, Jin L T, Geng B, Liu B T 2009 Acta Phys. Sin. 58 5624 (in Chinese) [关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭 2009 物理学报 58 5624]

    [4]

    Liu X C, Ji Y J, Zhao J Q, Liu L Q, Sun Z P, Dong H L 2010 Acta Phys. Sin. 59 4925 (in Chinese) [刘小村, 季燕菊, 赵俊卿, 刘立强, 孙兆鹏, 董和磊 2010 物理学报 59 4925]

    [5]

    Li H L, Zhang Z, L Y B, Huang J Z, Zhang Y, Liu R X 2013 Acta Phys. Sin. 62 047101 (in Chinese) [李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜 2013 物理学报 62 047101]

    [6]

    Thienprasert J T, Rujirawat S, Klysubun W, Duenow J N, Coutts T J, Zhang S B, Look D C, Limpijumnong S 2013 Phys. Rev. Lett. 110 055502

    [7]

    Lin Y C, Chang C H, Shen C H, Wang P W, Lee Y C 2010 Thin Solid Films 518 6055

    [8]

    Krithiga R, Chandrasekaran G 2009 J. Cryst. Growth 311 4610

    [9]

    Mhamdi A, Boukhachem A, Madani M, Lachheb H, Boubaker K, Amlouk A, Amlouk M 2013 Optik 124 3764

    [10]

    Tahir N, Hussain S T, Usman M, Hasanain S K, Mumtaz A 2009 Appl. Surf. Sci. 255 8506

    [11]

    Singh S, Rao M S R 2009 Phys. Rev. B 80 045210

    [12]

    Wang Q B, Zhou C, Wu J, L T 2013 Opt. Commun. 297 79

    [13]

    Hou Q Y, Dong H Y, Ma W, Zhao C W 2013 Acta Phys. Sin. 62 157101 (in Chinese) [侯清玉, 董红英, 马文, 赵春旺 2013 物理学报 62 157101]

    [14]

    Hu C E, Zeng Z Y, Cheng Y, Chen X R, Cai L C 2008 Chin. Phys. B 17 3867

    [15]

    Gui Q F, Cui L, Pan J, Hu J G 2013 Acta Phys. Sin. 62 087103 (in Chinese) [桂青凤, 崔 磊, 潘靖, 胡经国 2013 物理学报 62 087103]

    [16]

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Chin. Phys. Lett. 26 016105

    [17]

    El Mir L, Ghribi F, Hajiri M, Ben Ayadi Z, Diessas K, Cubukcu M, von Bardeleben H J 2011 Thin Solid Films 519 5787

    [18]

    Wang L W, Meng L J, Teixeira V, Song S G, Xu Z, Xu X R 2009 Thin Solid Films 517 3721

    [19]

    Luo J T, Zhu X Y, Fan B, Zeng F, Pan F 2009 J. Phys. D 42 115109

    [20]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [21]

    Ska K Z 2001 Thin Solid Films 391 229

    [22]

    Yan Y, AL-Jassim M M 2004 Phys. Rev. B 69 085204

    [23]

    Wu L, Hou T J, Wang Y, Zhao Y F, Guo Z Y, Li Y Y, Lee S T 2012 J. Alloys Compd. 541 250

    [24]

    García A G, Pérez W L, Hernádez R G 2013 Solid State Commun. 64 68

    [25]

    Dunne P, Uhlemann M, Gebert A, Schultz L 2012 ECS Transactions 45 97

    [26]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [27]

    Vogel D, Krger P, Pollmann J 1995 Phys. Rev. B 52 R14316

    [28]

    Karamat S, Rawat R S, Lee P, Tan T L, Ramanujan R V, Zhou W 2010 Appl. Surf. Sci. 256 2309

    [29]

    Sorescu M, Diamandescu L, Tarabsanu-Mihaila D, Teodorescuv V S 2004 J. Mater. Sci. 39 675

    [30]

    Wei L 2007 M. S. Dissertation (Kaifeng: Henan University) p64 (in Chinese) [魏凌 2007 硕士学位论文 (开封: 河南大学) 第64页]

    [31]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [32]

    Mulliken R S 1995 J. Chem. Phys. 23 1833

    [33]

    Huang K 2008 Solid State. Phys. (Beijing: Higher Education Press) pp422-426 (in Chinese) [黄昆 2008 固体物理学(北京: 高等教育出版社)第422–第426页]

    [34]

    Wang Q, Sun Q, Puru J, Zheng H, Note R, Kawazoe Y 2007 Appl. Phys. Lett. 91 063116

  • [1] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究. 物理学报, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [2] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究. 物理学报, 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [3] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱. 物理学报, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [4] 贾晓芳, 侯清玉, 赵春旺. 采用第一性原理研究钼掺杂浓度对ZnO物性的影响. 物理学报, 2017, 66(6): 067401. doi: 10.7498/aps.66.067401
    [5] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究. 物理学报, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [6] 曲灵丰, 侯清玉, 赵春旺. Y掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究. 物理学报, 2016, 65(3): 037103. doi: 10.7498/aps.65.037103
    [7] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究. 物理学报, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [8] 侯清玉, 李文材, 赵春旺. In–2N高共掺浓度和择优取向对ZnO最小光学带隙和吸收光谱的影响. 物理学报, 2015, 64(6): 067101. doi: 10.7498/aps.64.067101
    [9] 许镇潮, 侯清玉. GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响. 物理学报, 2015, 64(15): 157101. doi: 10.7498/aps.64.157101
    [10] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究. 物理学报, 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [11] 徐朝鹏, 王永贞, 张伟, 王倩, 吴国庆. Tl掺杂对InI禁带宽度和吸收边带影响的第一性原理研究. 物理学报, 2014, 63(14): 147102. doi: 10.7498/aps.63.147102
    [12] 毛斐, 侯清玉, 赵春旺, 郭少强. Pr高掺杂浓度对锐钛矿TiO2的带隙和吸收光谱影响的研究. 物理学报, 2014, 63(5): 057103. doi: 10.7498/aps.63.057103
    [13] 侯清玉, 吕致远, 赵春旺. V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究. 物理学报, 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [14] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究. 物理学报, 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [15] 侯清玉, 董红英, 马文, 赵春旺. Ga高掺杂对ZnO的最小光学带隙和吸收带边影响的第一性原理研究. 物理学报, 2013, 62(15): 157101. doi: 10.7498/aps.62.157101
    [16] 罗晓东, 狄国庆. 溅射制备Ge,Nb共掺杂窄光学带隙和低电阻率的TiO2薄膜. 物理学报, 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [17] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [18] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [19] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [20] 徐凌, 唐超群, 钱俊. C掺杂锐钛矿相TiO2吸收光谱的第一性原理研究. 物理学报, 2010, 59(4): 2721-2727. doi: 10.7498/aps.59.2721
计量
  • 文章访问数:  6439
  • PDF下载量:  680
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-17
  • 修回日期:  2014-01-07
  • 刊出日期:  2014-05-05

/

返回文章
返回