搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧空位浓度对ZnO电子结构和吸收光谱影响的研究

侯清玉 郭少强 赵春旺

引用本文:
Citation:

氧空位浓度对ZnO电子结构和吸收光谱影响的研究

侯清玉, 郭少强, 赵春旺

First-principle study of the effects of oxygen vacancy on the electronic structure and the absorption spectrum of ZnO

Hou Qing-Yu, Guo Shao-Qiang, Zhao Chun-Wang
PDF
导出引用
  • 目前,氧空位对ZnO形成杂质能级的研究结果存在相反的结论,深杂质能级和浅杂质能级两种实验结果均有文献报道,并且,在实验中高温加热的条件下,氧空位体系ZnO中导带自由电子增加的来源认识不足. 为了解决此问题,本文采用密度泛函理论框架下的第一性原理平面波超软赝势方法,建立了纯的与两种不同氧空位浓度ZnO超胞模型,分别对模型进行了几何结构优化、态密度分布、能带分布、布居值和差分电荷密度的计算. 结果表明,氧空位浓度越大,系统能量越上升、稳定性越下降、形成能越高、氧空位越难、导带越向低能方向移动、电子跃迁宽度越减小、吸收光谱越红移. 这对设计制备新型氧空位ZnO体系光学器件有一定的理论指导作用.
    Nowadays, the studies of the influence of oxygen vacancy on forming impurity level of ZnO have obtained contrary conclusions. The experimental results about both the deep impurity level and the shallow impurity level are reported. However, under the high temperature heating condition, the origin of free electron increasing in conduction band of ZnO with oxygen vacancy is not sufficiently understood. To slove this problem, according to the first-principles plane-wave ultrasoft pseudopotential of the density functional theory, we set up the models for a pure ZnO cell and two different oxygen vacancy concentration supercells of ZnO, and perform the geometrical optimization for three models. The density of state, band structure, population and differential electron density are also calculated. Calculation results indicate that with the increase of oxygen vacancy concentration, the total energy increases and the formation energy will be greater. It makes the stability decline and the oxygen vacancy harder. Meanwhile, its conduction band minimum shifts toward low energy, the electron transition width decreases, and the absorption spectrum is red-shifted. It shows that these results may be helpful for the future experimental design and also for the preparation of optical device with oxygen vacancy of ZnO.
    • 基金项目: 国家自然科学基金(批准号:61366008,51261017)、教育部“春晖计划”和内蒙古自治区高等学校科学研究项目(批准号:NJZZ13099)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 51261017), the Ministry of Education "Spring Sunshine" Plan Funding, China, and the College Science Research Projectof Inner Mongolia Autonomous Region, China (Grant No. NJZZ13099).
    [1]

    Yu A, Qian J S, Pan H, Cui Y M, Xu M G, Tu L, Chai Q L, Zhou X F 2011 Sensor Actuat. B 158 9

    [2]

    Razali R, Zak A K, Majid W H A, Darroudi M 2011 Ceram. Int. 37 3657

    [3]

    Vinodkumar R, Lethy K J, Beena D, Detty A P, Navas I, Nayar U V, Pillai V P M, Ganesan V, Reddy V R 2010 Sol. Energ. Mat. Sol. C 94 68

    [4]

    Karamdel J, Dee C F, Majlis B Y 2010 Appl. Surf. Sci. 256 6164

    [5]

    Ye N, Chen C C 2012 Opt. Mater. 34 753

    [6]

    Lin B X, Fu Z X, Jia Y B 2001 Appl. Phys. Lett. 79 943

    [7]

    Gao D, Zhang J, Yang G J, Qi J, Si M S, Xue D S 2011 J. Phys. Chem. C 115 16405

    [8]

    Li G R, Hu T, Pan G L, Yan T Y, Gao X P, Zhu H Y 2008 J. Phys. Chem. C 112 11859

    [9]

    Cheng L, Zhang Z Y, Shao J X 2011 Acta Phys. Chim. Sin. 27 846 (in Chinese) [成丽, 张子英, 邵建新 2011 物理化学学报 27 846]

    [10]

    Zhao J L, Zhang W Q, Li X M, Feng J W, Shi X 2006 J. Phys.: Condens. Matter 18 1495

    [11]

    Halliburton L E, Giles N C, Garces N Y, Luo M, Xu C C, Bai L H, Boatner L A 2005 Appl. Phys. Lett. 87 172108

    [12]

    Vlasenko L S, Watkins G D 2005 Phys. Rev. B 71 125210

    [13]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [14]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [15]

    Zhang D L, Xu X G, Wang W, Zhang X, Yang H L, Wu Y, Ma C Z, Jiang Y 2012 Rare Metals 31 112

    [16]

    Janotti A, Vander W C G 2007 Phys. Rev. B 76 165202

    [17]

    Chen L J, Hou Z F, Zhu Z Z, Yang Y 2003 Acta Phys. Sin. 52 2229 (in Chinese) [陈丽娟, 侯柱锋, 朱梓忠, 杨勇 2003 物理学报 52 2229]

    [18]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [19]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater. 22 565

    [20]

    Look D C, Hemsky J W, Sizelove J R 1999 Phys. Rev. Lett. 82 2552

    [21]

    Shen X C 2002 Semiconductor Spectroscopy and Optical Properties (Beijing: Science Press) pp136-137 (in Chinese) [沈学础 2002 半导体光谱和光学性质(第二版) (北京: 科学出版社) 第136–137页]

  • [1]

    Yu A, Qian J S, Pan H, Cui Y M, Xu M G, Tu L, Chai Q L, Zhou X F 2011 Sensor Actuat. B 158 9

    [2]

    Razali R, Zak A K, Majid W H A, Darroudi M 2011 Ceram. Int. 37 3657

    [3]

    Vinodkumar R, Lethy K J, Beena D, Detty A P, Navas I, Nayar U V, Pillai V P M, Ganesan V, Reddy V R 2010 Sol. Energ. Mat. Sol. C 94 68

    [4]

    Karamdel J, Dee C F, Majlis B Y 2010 Appl. Surf. Sci. 256 6164

    [5]

    Ye N, Chen C C 2012 Opt. Mater. 34 753

    [6]

    Lin B X, Fu Z X, Jia Y B 2001 Appl. Phys. Lett. 79 943

    [7]

    Gao D, Zhang J, Yang G J, Qi J, Si M S, Xue D S 2011 J. Phys. Chem. C 115 16405

    [8]

    Li G R, Hu T, Pan G L, Yan T Y, Gao X P, Zhu H Y 2008 J. Phys. Chem. C 112 11859

    [9]

    Cheng L, Zhang Z Y, Shao J X 2011 Acta Phys. Chim. Sin. 27 846 (in Chinese) [成丽, 张子英, 邵建新 2011 物理化学学报 27 846]

    [10]

    Zhao J L, Zhang W Q, Li X M, Feng J W, Shi X 2006 J. Phys.: Condens. Matter 18 1495

    [11]

    Halliburton L E, Giles N C, Garces N Y, Luo M, Xu C C, Bai L H, Boatner L A 2005 Appl. Phys. Lett. 87 172108

    [12]

    Vlasenko L S, Watkins G D 2005 Phys. Rev. B 71 125210

    [13]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [14]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [15]

    Zhang D L, Xu X G, Wang W, Zhang X, Yang H L, Wu Y, Ma C Z, Jiang Y 2012 Rare Metals 31 112

    [16]

    Janotti A, Vander W C G 2007 Phys. Rev. B 76 165202

    [17]

    Chen L J, Hou Z F, Zhu Z Z, Yang Y 2003 Acta Phys. Sin. 52 2229 (in Chinese) [陈丽娟, 侯柱锋, 朱梓忠, 杨勇 2003 物理学报 52 2229]

    [18]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [19]

    Mapa M, Sivaranjani K, Bhange D S, Saha B, Chakraborty P, Viswanath A K, Gopinath C S 2010 Chem. Mater. 22 565

    [20]

    Look D C, Hemsky J W, Sizelove J R 1999 Phys. Rev. Lett. 82 2552

    [21]

    Shen X C 2002 Semiconductor Spectroscopy and Optical Properties (Beijing: Science Press) pp136-137 (in Chinese) [沈学础 2002 半导体光谱和光学性质(第二版) (北京: 科学出版社) 第136–137页]

计量
  • 文章访问数:  3365
  • PDF下载量:  1315
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-13
  • 修回日期:  2014-04-03
  • 刊出日期:  2014-07-05

氧空位浓度对ZnO电子结构和吸收光谱影响的研究

  • 1. 内蒙古工业大学理学院物理系, 呼和浩特 010051
    基金项目: 

    国家自然科学基金(批准号:61366008,51261017)、教育部“春晖计划”和内蒙古自治区高等学校科学研究项目(批准号:NJZZ13099)资助的课题.

摘要: 目前,氧空位对ZnO形成杂质能级的研究结果存在相反的结论,深杂质能级和浅杂质能级两种实验结果均有文献报道,并且,在实验中高温加热的条件下,氧空位体系ZnO中导带自由电子增加的来源认识不足. 为了解决此问题,本文采用密度泛函理论框架下的第一性原理平面波超软赝势方法,建立了纯的与两种不同氧空位浓度ZnO超胞模型,分别对模型进行了几何结构优化、态密度分布、能带分布、布居值和差分电荷密度的计算. 结果表明,氧空位浓度越大,系统能量越上升、稳定性越下降、形成能越高、氧空位越难、导带越向低能方向移动、电子跃迁宽度越减小、吸收光谱越红移. 这对设计制备新型氧空位ZnO体系光学器件有一定的理论指导作用.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回