搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4296—4302 cm–1范围内氨气光谱线强与自展宽系数测量研究

龙江雄 邵立 张玉钧 尤坤 何莹 叶庆 孙晓泉

引用本文:
Citation:

4296—4302 cm–1范围内氨气光谱线强与自展宽系数测量研究

龙江雄, 邵立, 张玉钧, 尤坤, 何莹, 叶庆, 孙晓泉

Measurement research of line intensity and self-broadening coefficient for NH3 spectra in 4296–4302 cm–1

Long Jiang-Xiong, Shao Li, Zhang Yu-Jun, You Kun, He Ying, Ye Qing, Sun Xiao-Quan
PDF
HTML
导出引用
  • 由于HITRAN数据库中NH3在4296—4302 cm–1范围的谱线参数主要源于理论计算, 与实际情况存在差异. 为了修正数据库中该范围内NH3的谱线参数, 本文利用可调谐二极管激光吸收光谱(TDLAS)技术和计量学理论, 测量2—10 Torr(1 Torr = 133.322 Pa)高纯NH3在4296—4302 cm–1范围内的吸收光谱, 综合考虑压强、温度、气池光程、波数、线型拟合等主要影响因素, 对NH3在该波段的主要吸收谱线的线强和自展宽系数进行了反演和不确定度计算. 测量得到的线强与同行最新测量结果偏差在20%以内, 自展宽系数与HITRAN2020数据库偏差在14%以内, 二者的不确定度范围分别为0.63%—2.7%和0.77%—5.4%, 均小于HITRAN数据库中的不确定度范围10%—20%, 测量的部分谱线光谱参数在HITRAN中没有记录, 本文获得的结果对于补充和修正HITRAN数据中4296—4302 cm–1范围NH3的谱线参数具有参考意义.
    Spectral parameters of NH3 in a range of 4296–4302 cm–1 in the HITRAN database are different from the actual situation as they are derived from theoretical calculations. In order to correct the spectral parameters of NH3 in this range in HITRAN, tunable diode laser absorption spectroscopy (TDLAS) technology and metrological theory are used to measure the absorption spectrum high-purity NH3 in the range of 4296–4302 cm–1 at 2–10 Torr. The line intensity and self-broadening coefficient of the main absorption line of NH3 in this band are retrieved and their uncertainty are calculated by comprehensively considering main factors including pressure, temperature, optical path of gas cell, wavenumber and line shape fitting. The discrepancies between our measured line intensities and latest peer-measured results are within 20%. The biases between our self-broadening coefficients and the ones in HITRAN2020 are within 14%. Their uncertainties are in a range of the 0.63–2.7% and 0.77–5.4%, respectively, which are smaller than the uncertainty range of 10–20% in the HITRAN database. Some of the measured spectral parameters are not recorded in HITRAN. The experimental results in this work are of significant reference in supplementing and correcting the HITRAN spectral parameters of NH3 in the range of 4296–4302 cm–1.
      通信作者: 邵立, shaoli-eei@163.com ; 张玉钧, yjzhang@aiofm.ac.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 62033012)和安徽省重点研究和开发计划项目(批准号: 201904a07020093)资助的课题.
      Corresponding author: Shao Li, shaoli-eei@163.com ; Zhang Yu-Jun, yjzhang@aiofm.ac.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 62033012) and the Key Research and Development Program of Anhui Province, China (Grant No. 201904a07020093)
    [1]

    Kwak D, Lei Y, Maric R 2019 Talanta 204 713Google Scholar

    [2]

    Guo X, Zheng F, Li C, Yang X, Li N, Liu S, Wei J, Qiu X, He Q 2019 Opt. Lasers Eng. 115 243Google Scholar

    [3]

    Bolshov M A, Kuritsyn Yu A, Romanovskii Yu V 2015 Spectrochim. Acta B 106 45Google Scholar

    [4]

    Du Z, Zhang S, Li J, Gao N, Tong K 2019 Appl. Sci. 9 338Google Scholar

    [5]

    Kireev S V, Shnyrev S L 2018 Laser Phys. Lett. 15 035705Google Scholar

    [6]

    Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Perevalov V I, Perrin A, Shine K P, Smith M A H, Tennyson J, Toon G C, Tran H, Tyuterev V G, Barbe A, Császár A G, Devi V M, Furtenbacher T, Harrison J J, Hartmann J-M, Jolly A, Johnson T J, Karman T, Kleiner I, Kyuberis A A, Loos J, Lyulin O M, Massie S T, Mikhailenko S N, Moazzen-Ahmadi N, Müller H S P, Naumenko O V, Nikitin A V, Polyansky O L, Rey M, Rotger M, Sharpe S W, Sung K, Starikova E, Tashkun S A, Auwera J V, Wagner G, Wilzewski J, Wcisło P, Yu S, Zak E J 2017 J. Quant. Spectrosc. Ra. 203 3Google Scholar

    [7]

    Jacquinet-Husson N, Armante R, Scott N A, Chédin A, Crépeau L, Boutammine C, Bouhdaoui A, Crevoisier C, Capelle V, Boonne C, Poulet-Crovisier N, Barbe A, Chris Benner D, Boudon V, Brown L R, Buldyreva J, Campargue A, Coudert L H, Devi V M, Down M J, Drouin B J, Fayt A, Fittschen C, Flaud J-M, Gamache R R, Harrison J J, Hill C, Hodnebrog Ø, Hu S-M, Jacquemart D, Jolly A, Jiménez E, Lavrentieva N N, Liu A-W, Lodi L, Lyulin O M, Massie S T, Mikhailenko S, Müller H S P, Naumenko O V, Nikitin A, Nielsen C J, Orphal J, Perevalov V I, Perrin A, Polovtseva E, Predoi-Cross A, Rotger M, Ruth A A, Yu S S, Sung K, Tashkun S A, Tennyson J, Tyuterev Vl G, Vander Auwera J, Voronin B A, Makie A 2016 J. Mol. Spectrosc. 327 31Google Scholar

    [8]

    Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Ra. 111 2139Google Scholar

    [9]

    Jia H, Zhao W, Cai T, Chen W, Zhang W, Gao X 2009 J. Quant. Spectrosc. Ra. 110 347Google Scholar

    [10]

    聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar

    Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao Lu, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar

    [11]

    Pogány A, Balslev-Harder D, Braban C F, Cassidy N, Ebert V, Ferracci V, Hieta T, Leuenberger D, Martin N A, Pascale C, Peltola J, Persijn S, Tiebe C, Twigg M M, Vaittinen O, van Wijk J, Wirtz K, Niederhauser B 2016 Meas. Sci. Technol. 27 115012Google Scholar

    [12]

    Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffries J B, Enns G M, Hanson R K 2016 J. Quant. Spectrosc. Ra. 175 90Google Scholar

    [13]

    李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清 2020 物理学报 69 074201Google Scholar

    Li M Q, Zhang Y J, He Y, You K, Fan B Q, Yu D Q, Xie H, Lei B E, Li X Y, Liu J G, Liu W Q 2020 Acta Phys. Sin. 69 074201Google Scholar

    [14]

    Raza M, Ma L, Yao S, Chen L, Ren W 2021 Fuel 305 121591Google Scholar

    [15]

    Čermák P, Hovorka J, Veis P, Cacciani P, Cosléou J, El Romh J, Khelkhal M 2014 J. Quant. Spectrosc. Ra. 137 13Google Scholar

    [16]

    Čermák P, Cacciani P, Cosléou J 2021 J. Quant. Spectrosc. Ra. 274 107861Google Scholar

    [17]

    Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J –M., Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia–Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev V Yu, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2022 J. Quant. Spectrosc. Ra. 277 107949Google Scholar

    [18]

    Down M J, Hill C, Yurchenko S N, Tennyson J, Brown L R, Kleiner I 2013 J. Quant. Spectrosc. Ra. 130 260Google Scholar

    [19]

    Nemtchinov V, Sung K, Varanasi P 2004 J. Quant. Spectrosc. Ra. 83 243Google Scholar

    [20]

    Nwaboh J A, Pratzler S, Werhahn O, Ebert V 2017 Appl. Spectrosc. 71 888Google Scholar

    [21]

    Hanson R K, Spearrin R M, Goldenstein C S 2016 Spectroscopy and Optical Diagnostics for Gases (Cham: Springer International Publishing) p125

    [22]

    Li J, Du Y, Peng Z, Ding Y 2019 J. Quant. Spectrosc. Ra. 224 197Google Scholar

    [23]

    Nwaboh J A, Qu Z, Werhahn O, Ebert V 2017 Appl. Opt. 56 E84Google Scholar

    [24]

    International Organization for Standardization 2008 https://www.iso.org/cms/render/live/en/sites/isoorg/contents/ data/standard/05/04/50461.html

    [25]

    龙江雄, 张玉钧, 邵立, 叶庆, 何莹, 尤坤, 孙晓泉 2022 光谱学与光谱分析 42 in press

    Long J X, Zhang Y J, Shao L, Ye Q, He Y, You K, Sun X Q 2022 Spectrosc. Spect. Anal. 42 (in press) (in Chinese)

  • 图 1  TDLAS实验装置示意图(DFB: 分布式反馈激光器; D: InGaAs探测器; VG: 真空计; BV: 球阀; NV: 针阀)

    Fig. 1.  Schematic of TDLAS setup (DFB: distributed feedback; D: detector (InGaAs); VG: Vacuum gauge; BV: Ball valve; NV: Needle valve).

    图 2  不同气压下NH3在4296.4—4297.7 cm–1的探测器信号和扫描的相对波数

    Fig. 2.  Detector signal and scanned relative wavenumber for NH3 in 4296.4–4297.7 cm–1 at different pressure.

    图 3  不同气压下4296.4—4297.7 cm–1范围内4条谱线的光谱吸光度与Voigt线型拟合

    Fig. 3.  Spectral absorbance and Voigt fitting for 4 spectral lines in 4296.4–4297.7 cm–1 at different pressure.

    图 4  不同气压下(a)积分吸光度, (b)洛伦兹半高全宽的线性回归分析

    Fig. 4.  Linear regression analysis for (a) integral absorbance and (b) Lorentzian FWHM at different pressure.

    表 1  测量线强和自展宽系数与HITRAN2020及同行数据对比

    Table 1.  Comparison of measured line intensity and self-broadening coefficient with HITRAN2020 and peer data.

    ν0/cm–1S(T0)/(10–22 cm·molecule–1)γself/(cm–1·atm–1)
    ČermákTWHTRTW/%TWHTRTW/%
    4296.65295.7365.846 (37)6.421 b0.630.4402(34)0.5 b0.77
    4297.014625.8223.68(15)29.37 b0.630.588(13)0.5 b2.2
    4297.44437.0236.162(39)7.806 b0.630.2967(27)0.299 a0.91
    4297.56993.5413.137(22)3.853 b0.700.3118(59)0.299 a1.9
    4298.02940.63180.6343(86)0.558 b1.30.4465(80)0.486 b1.8
    4298.16630.63750.6944(97)0.00336 b1.40.2741(94)0.5 b3.4
    4298.25435.415.486(64)5.999 b1.20.3255(67)0.328 a2.1
    4298.82210.62830.6611(60)None0.900.2634(90)None3.4
    4298.85820.74840.6855(61)0.725 b0.890.320(11)0.327 b3.4
    4299.725211.149.751(81)11.16 b0.830.3960(82)0.452 a2.1
    4300.14097.6866.174(57)6.921c0.920.3958(80)0.364 a2.0
    4300.28392.0451.674(23)1.803 b1.30.220(12)0.255 b5.4
    4300.6540.55490.669(18)None2.70.485(13)None2.7
    4300.75181.0681.1089(86)0.893 b0.770.2138(85)0.486 b3.9
    4301.1316.9066.415(45)7.385 b0.700.3995(54)0.455 a1.3
    注: TW代表本文工作, RTW 代表本工作数据的相对标准不确定度, Čermák代表Čermák等[16]测量的线强数据, HT代表HITRAN2020, T0 = 296 K; a不确定度2%—5%, b不确定度10%—20%, c不确定度 > 20%; 括号中的数字表示标准不确定度(如5.846 (37)表示5.846 ± 0.037), None表示HITRAN2020没有该谱线数据.
    下载: 导出CSV

    表 2  4297.01 cm–1处不同输入参量在单次测量中的不确定度贡献

    Table 2.  Uncertainty contribution of different input parameters for one measurement at 4297.01 cm–1.

    QuantityValueRelative uncertainty/%Index of uncertainty contribution/%
    S(T0)γself
    p1.17 × 10–3 MPa0.210.070.82
    T296.2 K0.2111.110.9
    L81.61 cm0.5165.535.34
    A0.055837 cm–10.203
    Afit0.055837 cm–10.0370.34
    kν10.210.07
    kLf10.1072.88
    S(T0)2.368 × 10–21 cm/molecule0.63
    $\Delta {\nu _{\text{L}}}$0.0142 cm–10.21
    $\Delta {\nu _{ {\text{L,fit} } } }$0.0142 cm–10.070.1
    kν10.20.82
    kLf12.12 92.02
    γself0.588 cm–1/atm2.21
    下载: 导出CSV
  • [1]

    Kwak D, Lei Y, Maric R 2019 Talanta 204 713Google Scholar

    [2]

    Guo X, Zheng F, Li C, Yang X, Li N, Liu S, Wei J, Qiu X, He Q 2019 Opt. Lasers Eng. 115 243Google Scholar

    [3]

    Bolshov M A, Kuritsyn Yu A, Romanovskii Yu V 2015 Spectrochim. Acta B 106 45Google Scholar

    [4]

    Du Z, Zhang S, Li J, Gao N, Tong K 2019 Appl. Sci. 9 338Google Scholar

    [5]

    Kireev S V, Shnyrev S L 2018 Laser Phys. Lett. 15 035705Google Scholar

    [6]

    Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Perevalov V I, Perrin A, Shine K P, Smith M A H, Tennyson J, Toon G C, Tran H, Tyuterev V G, Barbe A, Császár A G, Devi V M, Furtenbacher T, Harrison J J, Hartmann J-M, Jolly A, Johnson T J, Karman T, Kleiner I, Kyuberis A A, Loos J, Lyulin O M, Massie S T, Mikhailenko S N, Moazzen-Ahmadi N, Müller H S P, Naumenko O V, Nikitin A V, Polyansky O L, Rey M, Rotger M, Sharpe S W, Sung K, Starikova E, Tashkun S A, Auwera J V, Wagner G, Wilzewski J, Wcisło P, Yu S, Zak E J 2017 J. Quant. Spectrosc. Ra. 203 3Google Scholar

    [7]

    Jacquinet-Husson N, Armante R, Scott N A, Chédin A, Crépeau L, Boutammine C, Bouhdaoui A, Crevoisier C, Capelle V, Boonne C, Poulet-Crovisier N, Barbe A, Chris Benner D, Boudon V, Brown L R, Buldyreva J, Campargue A, Coudert L H, Devi V M, Down M J, Drouin B J, Fayt A, Fittschen C, Flaud J-M, Gamache R R, Harrison J J, Hill C, Hodnebrog Ø, Hu S-M, Jacquemart D, Jolly A, Jiménez E, Lavrentieva N N, Liu A-W, Lodi L, Lyulin O M, Massie S T, Mikhailenko S, Müller H S P, Naumenko O V, Nikitin A, Nielsen C J, Orphal J, Perevalov V I, Perrin A, Polovtseva E, Predoi-Cross A, Rotger M, Ruth A A, Yu S S, Sung K, Tashkun S A, Tennyson J, Tyuterev Vl G, Vander Auwera J, Voronin B A, Makie A 2016 J. Mol. Spectrosc. 327 31Google Scholar

    [8]

    Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Ra. 111 2139Google Scholar

    [9]

    Jia H, Zhao W, Cai T, Chen W, Zhang W, Gao X 2009 J. Quant. Spectrosc. Ra. 110 347Google Scholar

    [10]

    聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar

    Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao Lu, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar

    [11]

    Pogány A, Balslev-Harder D, Braban C F, Cassidy N, Ebert V, Ferracci V, Hieta T, Leuenberger D, Martin N A, Pascale C, Peltola J, Persijn S, Tiebe C, Twigg M M, Vaittinen O, van Wijk J, Wirtz K, Niederhauser B 2016 Meas. Sci. Technol. 27 115012Google Scholar

    [12]

    Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffries J B, Enns G M, Hanson R K 2016 J. Quant. Spectrosc. Ra. 175 90Google Scholar

    [13]

    李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清 2020 物理学报 69 074201Google Scholar

    Li M Q, Zhang Y J, He Y, You K, Fan B Q, Yu D Q, Xie H, Lei B E, Li X Y, Liu J G, Liu W Q 2020 Acta Phys. Sin. 69 074201Google Scholar

    [14]

    Raza M, Ma L, Yao S, Chen L, Ren W 2021 Fuel 305 121591Google Scholar

    [15]

    Čermák P, Hovorka J, Veis P, Cacciani P, Cosléou J, El Romh J, Khelkhal M 2014 J. Quant. Spectrosc. Ra. 137 13Google Scholar

    [16]

    Čermák P, Cacciani P, Cosléou J 2021 J. Quant. Spectrosc. Ra. 274 107861Google Scholar

    [17]

    Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J –M., Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia–Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev V Yu, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2022 J. Quant. Spectrosc. Ra. 277 107949Google Scholar

    [18]

    Down M J, Hill C, Yurchenko S N, Tennyson J, Brown L R, Kleiner I 2013 J. Quant. Spectrosc. Ra. 130 260Google Scholar

    [19]

    Nemtchinov V, Sung K, Varanasi P 2004 J. Quant. Spectrosc. Ra. 83 243Google Scholar

    [20]

    Nwaboh J A, Pratzler S, Werhahn O, Ebert V 2017 Appl. Spectrosc. 71 888Google Scholar

    [21]

    Hanson R K, Spearrin R M, Goldenstein C S 2016 Spectroscopy and Optical Diagnostics for Gases (Cham: Springer International Publishing) p125

    [22]

    Li J, Du Y, Peng Z, Ding Y 2019 J. Quant. Spectrosc. Ra. 224 197Google Scholar

    [23]

    Nwaboh J A, Qu Z, Werhahn O, Ebert V 2017 Appl. Opt. 56 E84Google Scholar

    [24]

    International Organization for Standardization 2008 https://www.iso.org/cms/render/live/en/sites/isoorg/contents/ data/standard/05/04/50461.html

    [25]

    龙江雄, 张玉钧, 邵立, 叶庆, 何莹, 尤坤, 孙晓泉 2022 光谱学与光谱分析 42 in press

    Long J X, Zhang Y J, Shao L, Ye Q, He Y, You K, Sun X Q 2022 Spectrosc. Spect. Anal. 42 (in press) (in Chinese)

  • [1] 王夏春, 张志荣, 蔡永军, 孙鹏帅, 庞涛, 夏滑, 吴边, 郭强. 基于双楔形扫描镜的甲烷气体光谱成像方法. 物理学报, 2024, 73(11): 114202. doi: 10.7498/aps.73.20231906
    [2] 庞维煦, 李宁, 黄孝龙, 康杨, 李灿, 范旭东, 翁春生. 基于分数阶Tikhonov正则化的激光吸收光谱燃烧场二维重建光路优化研究. 物理学报, 2023, 72(3): 037801. doi: 10.7498/aps.72.20221731
    [3] 赵荣, 周宾, 刘奇, 戴明露, 汪步斌, 王一红. 基于激光吸收光谱技术的在线层析成像算法. 物理学报, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [4] 薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图. 基于激光外差探测的大气N2O吸收光谱测量与廓线反演. 物理学报, 2021, 70(21): 217801. doi: 10.7498/aps.70.20210710
    [5] 李小林, 袁坤, 何嘉乐, 刘洪峰, 张建波, 周阳. NH3在TaC(0001)表面吸附和解离的第一性原理研究*. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210400
    [6] 李宁, TuXin, 黄孝龙, 翁春生. 基于Tikhonov正则化参数矩阵的激光吸收光谱燃烧场二维重建光路设计方法. 物理学报, 2020, 69(22): 227801. doi: 10.7498/aps.69.20201144
    [7] 李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清. 基于连续量子级联激光器的1103.4 cm–1处NH3混叠吸收光谱特性研究. 物理学报, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [8] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量. 物理学报, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [9] 王传位, 李宁, 黄孝龙, 翁春生. 基于多角度投影激光吸收光谱技术的两段式速度分布流场测试方法. 物理学报, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [10] 孙明国, 马宏亮, 刘强, 曹振松, 王贵师, 刘锟, 黄印博, 高晓明, 饶瑞中. 2.0 μm附近模拟呼吸气体中13CO2/12CO2同位素丰度的高精度实时在线测量. 物理学报, 2018, 67(6): 064206. doi: 10.7498/aps.67.20171861
    [11] 李宁, 吕晓静, 翁春生. 基于光强与吸收率非线性同步拟合的吸收光谱测量方法. 物理学报, 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [12] 聂伟, 阚瑞峰, 许振宇, 姚路, 夏晖晖, 彭于权, 张步强, 何亚柏. 基于TDLAS技术的水汽低温吸收光谱参数测量. 物理学报, 2017, 66(20): 204204. doi: 10.7498/aps.66.204204
    [13] 聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹. 66116618 cm-1之间氨气光谱线强的测量. 物理学报, 2017, 66(5): 054207. doi: 10.7498/aps.66.054207
    [14] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法. 物理学报, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [15] 王杨, 李昂, 谢品华, 陈浩, 徐晋, 吴丰成, 刘建国, 刘文清. 多轴差分吸收光谱技术反演气溶胶消光系数垂直廓线. 物理学报, 2013, 62(18): 180705. doi: 10.7498/aps.62.180705
    [16] 陈玖英, 刘建国, 何亚柏, 王辽, 冮强, 许振宇, 姚路, 袁松, 阮俊, 何俊峰, 戴云海, 阚瑞峰. 2.0 μm处CO2高温谱线参数测量研究. 物理学报, 2013, 62(22): 224206. doi: 10.7498/aps.62.224206
    [17] 张帅, 刘文清, 张玉钧, 阮俊, 阚瑞峰, 尤坤, 于殿强, 董金婷, 韩小磊. 基于激光吸收光谱技术天然气管道泄漏定量遥测方法的研究. 物理学报, 2012, 61(5): 050701. doi: 10.7498/aps.61.050701
    [18] 张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军. 基于可调谐半导体激光吸收光谱技术的高速气流流速测量方法研究. 物理学报, 2012, 61(3): 034214. doi: 10.7498/aps.61.034214
    [19] 李宁, 翁春生. 基于多波长激光吸收光谱技术的气体浓度与温度二维分布遗传模拟退火重建研究. 物理学报, 2010, 59(10): 6914-6920. doi: 10.7498/aps.59.6914
    [20] 王 飞, 黄群星, 李 宁, 严建华, 池 涌, 岑可法. 利用可调谐半导体激光光谱技术对含尘气体中NH3的测量. 物理学报, 2007, 56(7): 3867-3872. doi: 10.7498/aps.56.3867
计量
  • 文章访问数:  5451
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 修回日期:  2022-04-18
  • 上网日期:  2022-08-06
  • 刊出日期:  2022-08-20

/

返回文章
返回