搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Tikhonov正则化参数矩阵的激光吸收光谱燃烧场二维重建光路设计方法

李宁 TuXin 黄孝龙 翁春生

引用本文:
Citation:

基于Tikhonov正则化参数矩阵的激光吸收光谱燃烧场二维重建光路设计方法

李宁, TuXin, 黄孝龙, 翁春生

Development of beam arrangement design for tunable diode laser absorption tomography reconstruction based on Tikhonov regularization parameter matrix

Li Ning, Tu Xin, Huang Xiao-Long, Weng Chun-Sheng
PDF
HTML
导出引用
  • 有限投影条件下激光吸收光谱二维测量光路优化对燃烧场重建结果具有重要影响. 针对基于Tikhonov正则化的病态投影方程组求解问题, 提出了基于正则化参数矩阵的光路设计与二维重建方法. 建立了基于Tikhonov正则化参数矩阵的光路设计目标函数, 利用遗传算法获得最佳光路布置方式, 通过匹配光路与正则化参数分布对测量区域内正则化权重进行调整以减小重建误差. 采用7185.6 cm–1波段H2O特征谱线并结合20条投影光路对10 × 10离散化测量区域内双峰高斯分布模型进行了重建, 对5种光路布置方式重建结果进行了对比分析, 结果表明基于Tikhonov正则化参数矩阵的光路布置方式重建结果最佳. 光路数量越少, Tikhonov正则化参数矩阵作用效果越明显. 开展了针对气液两相脉冲爆轰发动机外流场的模拟测量研究, 验证了本文光路布置方式在复杂多变流场环境下重建效果. 在实验室内针对小型燃气炉进行了实验测试, 重建燃烧场峰值位置和幅值与实际情况吻合. 研究结果对于推动激光吸收光谱二维重建技术在发动机诊断及燃烧效率提升方面的应用具有重要意义.
    Beam arrangement with limited projections is a critical part of research on tunable diode laser absorption tomography reconstruction for combustion diagnosis. Based on the efforts to regularize this rank-deficient and ill-posed problem with Tikhonov regularization, a novel approach to using the regularization parameter matrix is developed for designing optical component layout and predicting the reconstruction accuracy. Objective function of beam arrangement is established by the rigorous mathematical derivation, and genetic algorithm is adopted to realize the optimization of function to overcome the difficulty associated with the multimodal nature of the problem. Nonuniform distribution properties of matrix elements in physical space relate to location and alignment of the laser/detector pairs, and form a basis for adjusting the weight between measurement and regularization to improve the reconstruction performance. A mathematical model of double Gauss distributions is established in a 10 × 10 element discrete tomography domain, and typically 20 measurement beams scanning the H2O transition at 7185.6 cm–1 are available to probe the domain of interest. The systematic comparison between optimized beam array here and four existing beam arrangements in the literature is analyzed to validate the method. The reconstruction with Tikhonov regularization parameter matrix shows obvious advantages of reducing errors especially under the condition of fewer projections. The validation of reconstruction performance of the optimized beam array is also examined by simulating the laser absorption measurement which is carried out on phantoms generated using a simulation of external flow field of an air-gasoline pulsed detonation engine. The result shows that the optimized beam array consistently outperforms other arrangements reported in complicated fluid field. A demonstration reconstruction experiment is performed on the distribution from small gas burners. Both locations and amplitudes are in good agreement with those in the actual case. This proposed design method will be valuable in broadening the scope of applications of tunable diode laser absorption tomography reconstruction for engine diagnosis and combustion efficiency improvement.
      通信作者: 李宁, lining@njust.edu.cn
    • 基金项目: 中国国家留学基金(批准号: 201906845059)、江苏省自然科学基金青年基金(批准号: BK20190439)和中央高校基本科研业务费专项资金(批准号: 30919011258)资助的课题
      Corresponding author: Li Ning, lining@njust.edu.cn
    • Funds: Project supported by the China Scholarship Council (Grant No. 201906845059), the Young Scientists Found of the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20190439), and the Fundamental Research Funds of the Central Universities, China (Grant No. 30919011258)
    [1]

    Jatana G, Geckler S, Koeberlein D, Partridge W 2017 Sens. Actuators B-Chem. 240 1197Google Scholar

    [2]

    Kamimoto T, Deguchi Y, Shisawa Y, Kitauchi Y, Eto Y 2016 Appl. Therm. Eng. 102 596Google Scholar

    [3]

    Wood M P, Ozanyan K B 2015 IEEE Sens. J. 15 545Google Scholar

    [4]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 705Google Scholar

    [5]

    Strand C L, Hanson R K 2015 AIAA 53 2978Google Scholar

    [6]

    Tsekenis S A, Wilson D, Lengden M, Hyvonen J, Leinonen J, Shah A, Andersson O, McCann H 2017 Flow Meas. Instrum. 53 116Google Scholar

    [7]

    Tsekenis S A, Polydorides, N 2017 IEEE Sens. J. 17 8072Google Scholar

    [8]

    Xu L J, Liu C, Jing W Y, Cao Z, Xue X, Lin Y Z 2016 Rev. Sci. Instrum. 87 013101Google Scholar

    [9]

    Cai W W, Kaminski C F 2017 Prog. Energy Combust.Sci. 59 1Google Scholar

    [10]

    Liu C, Xu L J, Chen J L, Cao Z, Lin Y Z, Cai WW 2015 Opt. Express 23 22494Google Scholar

    [11]

    Wang F, Wu Q, Huang Q X, Zhang H D, Yan J H, Cen K F 2015 Opt. Commun. 346 53Google Scholar

    [12]

    Xia H H, Kan R F, Xu Z Y, He Y B, Liu J G, Chen B, Yang C G, Yao L, Wei M, Zhang G L 2017 Opt. Laser Eng. 90 10Google Scholar

    [13]

    Cai W W, Ewing D J, Ma L 2008 Comput. Phys. Commun. 179 250Google Scholar

    [14]

    Cai W W, Ewing D J, Ma L 2011 Appl.Math. Comput. 217 5754Google Scholar

    [15]

    Terzija N, Davidson J L, Garciastewart C A, Wright P, Ozanyan K B, Pegrum S, Litt T J, Mccann H 2009 Meas. Sci.Technol. 19 094007Google Scholar

    [16]

    Song J L, Hong Y J, Pan H, Wang G Y 2013 Proceedings of 5th International Symposium on Photoelectronic Detection and Imaging Beijing, China, June 25–27, 2013 p89070K

    [17]

    Twynstra M G, Daun K J 2012 Appl. Opt. 51 7059Google Scholar

    [18]

    Grauer S J, Hadwin P J, Daun K J 2016 Appl. Opt. 55 5772Google Scholar

    [19]

    Yu T, Tian B, Cai W W 2017 Opt. Express 25 5982Google Scholar

    [20]

    Kang Y, Li N, Weng C S, Wang C W 2018 Chin. Phys. B 27 104703Google Scholar

  • 图 1  激光吸收光谱二维测量光路系统示意图

    Fig. 1.  Geometry of transmitted laser beam in tomography measurement.

    图 2  不同正则化参数$\lambda $影响下增广矩阵$\left[ {{{A}}; \lambda {{L}}} \right]$奇异值变化曲线

    Fig. 2.  Singular values of the augmented matrix $\left[ {{{A}}; \lambda {{L}}} \right]$ with various λ.

    图 3  光路布置目标函数遗传算法求解过程

    Fig. 3.  Evolution of objective function by genetic algorithm.

    图 4  光路布置方式与相应的正则化参数矩阵 (a) 扇形光路布置; (b) 正则化参数矩阵元素分布图像

    Fig. 4.  Beam configuration and corresponding regularization parameter matrix: (a) Fanned beam configuration; (b) distribution of matrix elements in the physical space.

    图 5  4 × 4扇形光路布置方式下分别利用单一正则化参数与正则化参数矩阵方法对100个高斯分布模型重建结果对比

    Fig. 5.  Comparison of reconstruction errors for 4 × 4 fanned beam arrangement and 100 Gauss phantoms calculated by single regularization parameter and regularization parameter matrix.

    图 6  5种光路布置方式空间分布图与对应投影域图 (a) 2 × 10平行光路布置方式; (b) 4 × 5扇形光路布置方式; (c) 基于Mod设计的光路布置方式; (d) 基于单一正则化参数设计的光路布置方式; (e) 基于正则化参数矩阵设计的光路布置方式

    Fig. 6.  Five example beam configuration in the physical space and in Radon space: (a) 2 × 10 parallel beams arrangement; (b) 4 × 5 fanned beams arrangement; (c) beams arrangement designed based on MOD method; (d) beams arrangement designed based on single regularization parameter; (e) beams arrangement designed based on regularization parameter matrix.

    图 7  二维重建模型与不同光路布置方式重建结果 (a) 重建模型; (b) 2 × 10平行光路布置方式; (c) 4 × 5扇形光路布置方式; (d) 基于Mod设计的光路布置方式; (e) 基于单一正则化参数设计的光路布置方式; (f) 基于正则化参数矩阵设计的光路布置方式

    Fig. 7.  Phantom and reconstruction results from different beam arrangement: (a) Phantom; (b) 2 × 10 parallel beams arrangement; (c) 4 × 5 fanned beams arrangement; (d) beams arrangement designed based on MOD method; (e) beams arrangement designed based on single regularization parameter; (f) beams arrangement designed based on regularization parameter matrix.

    图 8  投影数据噪音对重建误差的影响

    Fig. 8.  Effect of noise in projections on reconstruction error.

    图 9  气液两相爆轰外流场重建模型

    Fig. 9.  Model of simulated tomography measurement in a two-phase detonation flow.

    图 10  基于图6不同光路布置方式的气液两相爆轰外流场重建结果对比

    Fig. 10.  Comparison of reconstruction errors for the external flow field of two-phase detonation based on beam arrangements in Fig.6.

    图 11  激光吸收光谱二维重建实验示意图

    Fig. 11.  Experiment on tomography reconstruction based on tunable diode laser absorption.

    图 12  燃气炉重建结果 (a) 单炉实验结果; (b) 双炉实验结果

    Fig. 12.  Reconstruction results of gas burners: (a) single burner; (b) double burners.

  • [1]

    Jatana G, Geckler S, Koeberlein D, Partridge W 2017 Sens. Actuators B-Chem. 240 1197Google Scholar

    [2]

    Kamimoto T, Deguchi Y, Shisawa Y, Kitauchi Y, Eto Y 2016 Appl. Therm. Eng. 102 596Google Scholar

    [3]

    Wood M P, Ozanyan K B 2015 IEEE Sens. J. 15 545Google Scholar

    [4]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 705Google Scholar

    [5]

    Strand C L, Hanson R K 2015 AIAA 53 2978Google Scholar

    [6]

    Tsekenis S A, Wilson D, Lengden M, Hyvonen J, Leinonen J, Shah A, Andersson O, McCann H 2017 Flow Meas. Instrum. 53 116Google Scholar

    [7]

    Tsekenis S A, Polydorides, N 2017 IEEE Sens. J. 17 8072Google Scholar

    [8]

    Xu L J, Liu C, Jing W Y, Cao Z, Xue X, Lin Y Z 2016 Rev. Sci. Instrum. 87 013101Google Scholar

    [9]

    Cai W W, Kaminski C F 2017 Prog. Energy Combust.Sci. 59 1Google Scholar

    [10]

    Liu C, Xu L J, Chen J L, Cao Z, Lin Y Z, Cai WW 2015 Opt. Express 23 22494Google Scholar

    [11]

    Wang F, Wu Q, Huang Q X, Zhang H D, Yan J H, Cen K F 2015 Opt. Commun. 346 53Google Scholar

    [12]

    Xia H H, Kan R F, Xu Z Y, He Y B, Liu J G, Chen B, Yang C G, Yao L, Wei M, Zhang G L 2017 Opt. Laser Eng. 90 10Google Scholar

    [13]

    Cai W W, Ewing D J, Ma L 2008 Comput. Phys. Commun. 179 250Google Scholar

    [14]

    Cai W W, Ewing D J, Ma L 2011 Appl.Math. Comput. 217 5754Google Scholar

    [15]

    Terzija N, Davidson J L, Garciastewart C A, Wright P, Ozanyan K B, Pegrum S, Litt T J, Mccann H 2009 Meas. Sci.Technol. 19 094007Google Scholar

    [16]

    Song J L, Hong Y J, Pan H, Wang G Y 2013 Proceedings of 5th International Symposium on Photoelectronic Detection and Imaging Beijing, China, June 25–27, 2013 p89070K

    [17]

    Twynstra M G, Daun K J 2012 Appl. Opt. 51 7059Google Scholar

    [18]

    Grauer S J, Hadwin P J, Daun K J 2016 Appl. Opt. 55 5772Google Scholar

    [19]

    Yu T, Tian B, Cai W W 2017 Opt. Express 25 5982Google Scholar

    [20]

    Kang Y, Li N, Weng C S, Wang C W 2018 Chin. Phys. B 27 104703Google Scholar

  • [1] 王夏春, 张志荣, 蔡永军, 孙鹏帅, 庞涛, 夏滑, 吴边, 郭强. 基于双楔形扫描镜的甲烷气体光谱成像方法. 物理学报, 2024, 73(11): 114202. doi: 10.7498/aps.73.20231906
    [2] 赵荣, 周宾, 刘奇, 戴明露, 汪步斌, 王一红. 基于激光吸收光谱技术的在线层析成像算法. 物理学报, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [3] 庞维煦, 李宁, 黄孝龙, 康杨, 李灿, 范旭东, 翁春生. 基于分数阶Tikhonov正则化的激光吸收光谱燃烧场二维重建光路优化研究. 物理学报, 2023, 72(3): 037801. doi: 10.7498/aps.72.20221731
    [4] 龙江雄, 邵立, 张玉钧, 尤坤, 何莹, 叶庆, 孙晓泉. 4296—4302 cm–1范围内氨气光谱线强与自展宽系数测量研究. 物理学报, 2022, 71(16): 164204. doi: 10.7498/aps.71.20220504
    [5] 王芙蓉, 杨帆, 张亚, 李世中, 王鹤峰. 基于奇异值分解的矩阵低秩近似量子算法. 物理学报, 2021, 70(15): 150201. doi: 10.7498/aps.70.20210411
    [6] 李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清. 基于连续量子级联激光器的1103.4 cm–1处NH3混叠吸收光谱特性研究. 物理学报, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [7] 王仲根, 沐俊文, 林涵, 聂文艳. 新型缩减矩阵构造加快特征基函数法迭代求解. 物理学报, 2019, 68(17): 170201. doi: 10.7498/aps.68.20190572
    [8] 王传位, 李宁, 黄孝龙, 翁春生. 基于多角度投影激光吸收光谱技术的两段式速度分布流场测试方法. 物理学报, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [9] 李宁, 吕晓静, 翁春生. 基于光强与吸收率非线性同步拟合的吸收光谱测量方法. 物理学报, 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [10] 谢正超, 王飞, 严建华, 岑可法. 炉膛三维温度场重建中Tikhonov正则化和截断奇异值分解算法比较. 物理学报, 2015, 64(24): 240201. doi: 10.7498/aps.64.240201
    [11] 苏海晶, 王启光, 杨杰, 钱忠华. 基于奇异值分解对中国夏季降水模式误差订正的研究. 物理学报, 2013, 62(10): 109202. doi: 10.7498/aps.62.109202
    [12] 尹柏强, 何怡刚, 吴先明. 心磁信号广义S变换域奇异值分解滤波方法. 物理学报, 2013, 62(14): 148702. doi: 10.7498/aps.62.148702
    [13] 郑安总, 冷永刚, 范胜波. 基于奇异值分解的随机共振特征提取研究. 物理学报, 2012, 61(21): 210503. doi: 10.7498/aps.61.210503
    [14] 姜祝辉, 黄思训, 杜华栋, 刘博. 利用变分结合正则化方法对高度计风速资料调整海面风场的研究. 物理学报, 2010, 59(12): 8968-8977. doi: 10.7498/aps.59.8968
    [15] 李宁, 翁春生. 基于多波长激光吸收光谱技术的气体浓度与温度二维分布遗传模拟退火重建研究. 物理学报, 2010, 59(10): 6914-6920. doi: 10.7498/aps.59.6914
    [16] 宋伟, 侯建军, 李赵红, 黄亮. 一种基于Logistic混沌系统和奇异值分解的零水印算法. 物理学报, 2009, 58(7): 4449-4456. doi: 10.7498/aps.58.4449
    [17] 郭成豹, 肖昌汉, 刘大明. 基于积分方程法和奇异值分解的磁性目标磁场延拓技术研究. 物理学报, 2008, 57(7): 4182-4188. doi: 10.7498/aps.57.4182
    [18] 徐 亮, 毕传兴, 陈 剑, 陈心昭. 基于波叠加法的patch近场声全息及其实验研究. 物理学报, 2007, 56(5): 2776-2783. doi: 10.7498/aps.56.2776
    [19] 李卫兵, 陈 剑, 毕传兴, 陈心昭. 联合波叠加法的全息理论与实验研究. 物理学报, 2006, 55(3): 1264-1270. doi: 10.7498/aps.55.1264
    [20] 白 云, 刘新元, 何定武, 汝鸿羽, 齐 亮, 季敏标, 赵 巍, 谢飞翔, 聂瑞娟, 马 平, 戴远东, 王福仁. 在SQUID心磁测量中基于奇异值分解和自适应滤波的噪声消除法. 物理学报, 2006, 55(5): 2651-2656. doi: 10.7498/aps.55.2651
计量
  • 文章访问数:  5568
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-17
  • 修回日期:  2020-08-14
  • 上网日期:  2020-11-14
  • 刊出日期:  2020-11-20

/

返回文章
返回