搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于奇异值分解正则化和快速迭代收缩阈值算法的无相位辐射源重构算法

邓垫君 李燕

引用本文:
Citation:

基于奇异值分解正则化和快速迭代收缩阈值算法的无相位辐射源重构算法

邓垫君, 李燕
cstr: 32037.14.aps.74.20250062

An algorithm of reconstructing phaseless radiation source based on singular value decomposition regularization and fast iterative shrinkage-thresholding algorithm

DENG Dianjun, LI Yan
cstr: 32037.14.aps.74.20250062
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文提出了一种基于奇异值分解(SVD)正则化和快速迭代收缩阈值算法(FISTA)的单层无相位辐射源重构算法. 该方法能够有效地识别集成电路中的电磁干扰源. 首先, 通过近场扫描获取电磁场数据, 随后利用源重构方法(SRM)在其表面重建等效偶极子模型. 引入SVD正则化项以提高算法的稳定性和抗噪声能力, FISTA技术则加速了算法的收敛速度. 为了验证该方法的准确性和对高斯噪声的鲁棒性, 进行了贴片天线仿真分析和芯片实验测试. 结果表明, 该算法在第35次迭代时达到稳定, 重构结果与仿真结果的相对误差为2.3%, 迭代时间仅为传统方法的61.7%, 相对误差减少了52%.
    An algorithm of reconstructing phaseless radiation source based on singular value decomposition (SVD) regularization and fast iterative shrinkage-thresholding algorithm (FISTA) is proposed in this work, aiming at efficiently identifying electromagnetic interference (EMI) sources in integrated circuits (ICs). The method acquires electromagnetic field data through near-field scanning and reconstructs an equivalent dipole array on the surface of the radiation source by using the source reconstruction method (SRM). In the reconstruction process, the SVD regularization term enhances the algorithm's stability and noise resistance, while the FISTA accelerates the convergence speed.In order to validate the effectiveness of the proposed method, dipole array reconstruction is first performed using near-field data at a height of 5 mm for a patch antenna simulation model, followed by analyzing the magnetic field data at a 10 mm validation plane. At the 35th iteration, the total relative error of the reconstruction is 1.21%. The influence of the regularization parameter α on the result is then investigated, and it is found that when α = 0.05 the error is minimized. The method is also tested under different Gaussian white noise conditions, and the relative error is kept below 5%, which demonstrates strong robustness.Finally, the experiments on chips are conducted to verify the method. The proposed method converges stably within 35 iterations, with a relative error of 2.3% in the reconstruction results. The proposed method reduces the total iteration time to 61.7% of the single-layer phaseless interpolation algorithm, while achieving a 52% lower relative error than the double-layer phasless iteration algorithm. The experimental results show that the proposed method can reconstruct phaseless radiation source efficiently and accurately, and has good noise robustness, which is suitable for EMI analysis in ICs.
      通信作者: 李燕, liyan@cjlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62071424)和浙江省自然科学基金重大项目(批准号: LHZSD25F010001)资助的课题.
      Corresponding author: LI Yan, liyan@cjlu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 62071424) and the Key Program of the Natural Science Foundation of Zhejiang Province, China (Grant No. LHZSD25F010001).
    [1]

    Schuman C D, Kulkarni S R, Parsa M, Mitchell J P, Date P, Kay B 2022 Nat. Comput. 2 10Google Scholar

    [2]

    Serpaud S, Boyer A, Dhia S B, Coccetti F 2022 IEEE Trans. Electromagn. Compat. 64 816Google Scholar

    [3]

    Boyer A, Nolhier N, Caignet F, Dhia S B 2022 IEEE Trans. Electromagn. Compat. 64 1230Google Scholar

    [4]

    曹钟, 杜平安, 聂宝林, 任丹, 张其道 2014 物理学报 63 124102Google Scholar

    Cao Z, Du P A, Nie B L, Ren D, Zhang Q D 2014 Acta. Phys. Sin. 63 124102Google Scholar

    [5]

    Yang R, Wei X C, Shu Y F, Yi D, Yang Y B 2019 IEEE Trans. Antennas Propag. 67 6821Google Scholar

    [6]

    Zhang J, Kam K W, Min J, Khilkevich V V, Pommerenke D, Fan J 2013 IEEE Trans Instrum. Meas. 62 648Google Scholar

    [7]

    Wang L, Zhang Y, Han F, Zhou J, Liu QH 2020 IEEE Trans. Microwave Theory Tech. 68 4151Google Scholar

    [8]

    Weng H, Beetner D G, DuBroff R E 2011 IEEE Trans. Electromagn. Compat. 53 891Google Scholar

    [9]

    Zuo P, Li Y, Xu Y, Zheng H, Li E P 2019 IEEE Trans. Compon. Packag. Manuf. Technol. 9 329Google Scholar

    [10]

    Yu Z, Mix J A, Sajuyigbe S, Slattery K P, Fan J 2012 IEEE Trans. Electromagn. Compat. 55 97

    [11]

    Kornprobst J, Mauermayer R A M, Neitz O, Knapp J, Eibert T F 2019 Prog. Electromagn. Res. 165 47Google Scholar

    [12]

    Yi Z, Zou J, Tian X, Huang Q, Fang W, Shao W, En Y, Gao Y, Han P 2023 IEEE Trans. Electromagn. Compat. 65 879Google Scholar

    [13]

    Regue J R, Ribó M, Garrell J M, Martín A 2001 IEEE Trans. Electromagn. Compat 43 520Google Scholar

    [14]

    Han D H, Wei X C, Wang D, Liang W T, Song T H, Gao R X 2024 IEEE Trans. Electromagn. Compat. 66 566Google Scholar

    [15]

    Xiang F P, Li E P, Wei X C, Jin J M 2015 IEEE Trans. Electromagn. Compat. 57 1197Google Scholar

    [16]

    Shu Y F, Wei X C, Fan J, Yang R, Yang Y B 2019 IEEE Trans. Microwave Theory Tech. 67 1790Google Scholar

    [17]

    Zhang J, Fan J 2017 IEEE Trans. Electromagn. Compat. 59 557Google Scholar

    [18]

    Shu Y F, Wei X C, Yang R, Liu E X 2017 IEEE Trans. Electromagn. Compat. 60 937

    [19]

    Yu Z W, Jason M, Sajuyigbe S, Slattery K P, Fan J 2013 IEEE Trans. Electromagn. Compat. 55 97Google Scholar

    [20]

    Beck A, Teboulle M 2009 SIAM J. Imaging Sci. 2 183Google Scholar

  • 图 1  辐射源重构原理图

    Fig. 1.  The radiation source reconstruction schematic.

    图 2  所提算法流程图

    Fig. 2.  Flowchart of the proposed algorithm.

    图 3  贴片天线模型图 (a)三维图; (b)天线结构

    Fig. 3.  Patch antenna model diagram: (a) Three-dimensional diagram; (b) antenna structure.

    图 4  z = 12 mm, f = 2.5 GHz下仿真和源重构的磁场分量幅值结果 (a)仿真的磁场分量幅值; (b)源重构的磁场分量幅值

    Fig. 4.  Magnitude of magnetic field component for simulation and source reconstruction under z = 12 mm, f = 2.5 GHz: (a) Simulated magnetic field component amplitude; (b) magnetic field component amplitude of SRM.

    图 5  z = 12 mm, f = 2.5 GHz下源重构的相对误差 (a) 磁场分量的相对误差$\sigma_{H_x}, ~\sigma_{H_y}和\sigma_{H_z} $; (b)总相对误差σH

    Fig. 5.  Relative error of SRM at z = 12 mm, f = 2.5 GHz: (a) Relative error of magnetic field components $\sigma_{H_x}, ~\sigma_{H_y}\text{ and }\sigma_{H_z} $; (b) total relative error σH.

    图 6  不同正则化参数对总相对误差的影响

    Fig. 6.  Influence of different regularization parameters on total relative error.

    图 7  在不同水平的高斯白噪声下z = 12 mm, f = 2.5 GHz磁场|Hx|幅值 (a) SNR = 5 dB; (b) SNR = 10 dB; (c) SNR = 20 dB; (d) SNR = 30 dB

    Fig. 7.  Magnetic field $ \left|{H}_{x}\right| $ amplitude under different levels of white Gaussian noise, z = 12 mm, f = 2.5 GHz: (a) SNR = 5 dB; (b) SNR = 10 dB; (c) SNR = 20 dB; (d) SNR = 30 dB.

    图 8  加入不同高斯白噪声后总的相对误差

    Fig. 8.  Total relative error after adding different Gaussian white noise.

    图 9  近场扫描实验设备 (a)近场扫描装置设备; (b)芯片模型

    Fig. 9.  Near field scanning experimental equipment: (a) Near field scanning equipment; (b) chip model.

    图 10  z = 8.22 mm, f = 2 GHz下近场扫描和源重构的磁场分量幅值 (a)近场扫描的磁场分量幅值; (b)源重构的磁场分量幅值

    Fig. 10.  Amplitude of magnetic field components in near-field scanning and SRM at z = 8.22 mm, f = 2 GHz: (a) Amplitude of magnetic field component in near-field scanning; (b) magnetic field component amplitude of SRM.

    表 1  与现有方法的时间和相对误差进行对比

    Table 1.  Comparison of time and relative error with existing methods.

    方法准备时间/s迭代时间/s总时间/s总相对误差
    双层无相位
    迭代算法[18]
    2031.21201.052132.264.8%
    单层无相位
    插值算法[17]
    202.15110.36312.513.4%
    本文方法95.3497.56192.92.3%
    下载: 导出CSV
  • [1]

    Schuman C D, Kulkarni S R, Parsa M, Mitchell J P, Date P, Kay B 2022 Nat. Comput. 2 10Google Scholar

    [2]

    Serpaud S, Boyer A, Dhia S B, Coccetti F 2022 IEEE Trans. Electromagn. Compat. 64 816Google Scholar

    [3]

    Boyer A, Nolhier N, Caignet F, Dhia S B 2022 IEEE Trans. Electromagn. Compat. 64 1230Google Scholar

    [4]

    曹钟, 杜平安, 聂宝林, 任丹, 张其道 2014 物理学报 63 124102Google Scholar

    Cao Z, Du P A, Nie B L, Ren D, Zhang Q D 2014 Acta. Phys. Sin. 63 124102Google Scholar

    [5]

    Yang R, Wei X C, Shu Y F, Yi D, Yang Y B 2019 IEEE Trans. Antennas Propag. 67 6821Google Scholar

    [6]

    Zhang J, Kam K W, Min J, Khilkevich V V, Pommerenke D, Fan J 2013 IEEE Trans Instrum. Meas. 62 648Google Scholar

    [7]

    Wang L, Zhang Y, Han F, Zhou J, Liu QH 2020 IEEE Trans. Microwave Theory Tech. 68 4151Google Scholar

    [8]

    Weng H, Beetner D G, DuBroff R E 2011 IEEE Trans. Electromagn. Compat. 53 891Google Scholar

    [9]

    Zuo P, Li Y, Xu Y, Zheng H, Li E P 2019 IEEE Trans. Compon. Packag. Manuf. Technol. 9 329Google Scholar

    [10]

    Yu Z, Mix J A, Sajuyigbe S, Slattery K P, Fan J 2012 IEEE Trans. Electromagn. Compat. 55 97

    [11]

    Kornprobst J, Mauermayer R A M, Neitz O, Knapp J, Eibert T F 2019 Prog. Electromagn. Res. 165 47Google Scholar

    [12]

    Yi Z, Zou J, Tian X, Huang Q, Fang W, Shao W, En Y, Gao Y, Han P 2023 IEEE Trans. Electromagn. Compat. 65 879Google Scholar

    [13]

    Regue J R, Ribó M, Garrell J M, Martín A 2001 IEEE Trans. Electromagn. Compat 43 520Google Scholar

    [14]

    Han D H, Wei X C, Wang D, Liang W T, Song T H, Gao R X 2024 IEEE Trans. Electromagn. Compat. 66 566Google Scholar

    [15]

    Xiang F P, Li E P, Wei X C, Jin J M 2015 IEEE Trans. Electromagn. Compat. 57 1197Google Scholar

    [16]

    Shu Y F, Wei X C, Fan J, Yang R, Yang Y B 2019 IEEE Trans. Microwave Theory Tech. 67 1790Google Scholar

    [17]

    Zhang J, Fan J 2017 IEEE Trans. Electromagn. Compat. 59 557Google Scholar

    [18]

    Shu Y F, Wei X C, Yang R, Liu E X 2017 IEEE Trans. Electromagn. Compat. 60 937

    [19]

    Yu Z W, Jason M, Sajuyigbe S, Slattery K P, Fan J 2013 IEEE Trans. Electromagn. Compat. 55 97Google Scholar

    [20]

    Beck A, Teboulle M 2009 SIAM J. Imaging Sci. 2 183Google Scholar

  • [1] 王泽龙, 王与烨, 李海滨, 张敬喜, 徐德刚, 姚建铨. 基于DAST晶体的连续太赫兹差频辐射源研究. 物理学报, 2025, 74(3): 034201. doi: 10.7498/aps.74.20241349
    [2] 陈韬, 江普庆. 揭示热反射实验中热物性参数的本征关系. 物理学报, 2024, 73(23): 230202. doi: 10.7498/aps.73.20241369
    [3] 王芙蓉, 杨帆, 张亚, 李世中, 王鹤峰. 基于奇异值分解的矩阵低秩近似量子算法. 物理学报, 2021, 70(15): 150201. doi: 10.7498/aps.70.20210411
    [4] 许育培, 李树. 球几何中辐射源粒子抽样方法的改进. 物理学报, 2020, 69(11): 119501. doi: 10.7498/aps.69.20200024
    [5] 李宁, TuXin, 黄孝龙, 翁春生. 基于Tikhonov正则化参数矩阵的激光吸收光谱燃烧场二维重建光路设计方法. 物理学报, 2020, 69(22): 227801. doi: 10.7498/aps.69.20201144
    [6] 王仲根, 沐俊文, 林涵, 聂文艳. 新型缩减矩阵构造加快特征基函数法迭代求解. 物理学报, 2019, 68(17): 170201. doi: 10.7498/aps.68.20190572
    [7] 张熙程, 方龙杰, 庞霖. 强散射过程中基于奇异值分解的光学传输矩阵优化方法. 物理学报, 2018, 67(10): 104202. doi: 10.7498/aps.67.20172688
    [8] 施卫, 闫志巾. 雪崩倍增GaAs光电导太赫兹辐射源研究进展. 物理学报, 2015, 64(22): 228702. doi: 10.7498/aps.64.228702
    [9] 谢正超, 王飞, 严建华, 岑可法. 炉膛三维温度场重建中Tikhonov正则化和截断奇异值分解算法比较. 物理学报, 2015, 64(24): 240201. doi: 10.7498/aps.64.240201
    [10] 李树, 邓力, 田东风, 李刚. 基于能量密度分布的辐射源粒子空间抽样方法研究. 物理学报, 2014, 63(23): 239501. doi: 10.7498/aps.63.239501
    [11] 李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋. 大功率0.34 THz辐射源中慢波结构的优化设计. 物理学报, 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [12] 苏海晶, 王启光, 杨杰, 钱忠华. 基于奇异值分解对中国夏季降水模式误差订正的研究. 物理学报, 2013, 62(10): 109202. doi: 10.7498/aps.62.109202
    [13] 尹柏强, 何怡刚, 吴先明. 心磁信号广义S变换域奇异值分解滤波方法. 物理学报, 2013, 62(14): 148702. doi: 10.7498/aps.62.148702
    [14] 曹冬杰, 郄秀书, 段树, 宣越建, 王东方. 基于VHF辐射源短基线定位系统对闪电放电过程的研究. 物理学报, 2012, 61(6): 069202. doi: 10.7498/aps.61.069202
    [15] 郑安总, 冷永刚, 范胜波. 基于奇异值分解的随机共振特征提取研究. 物理学报, 2012, 61(21): 210503. doi: 10.7498/aps.61.210503
    [16] 高喜, 杨梓强, 侯钧, 亓丽梅, 兰峰, 史宗君, 李大治, 梁正. 具有变态光子带隙结构的相对论Cherenkov辐射源的研究. 物理学报, 2009, 58(2): 1105-1109. doi: 10.7498/aps.58.1105
    [17] 宋伟, 侯建军, 李赵红, 黄亮. 一种基于Logistic混沌系统和奇异值分解的零水印算法. 物理学报, 2009, 58(7): 4449-4456. doi: 10.7498/aps.58.4449
    [18] 郭成豹, 肖昌汉, 刘大明. 基于积分方程法和奇异值分解的磁性目标磁场延拓技术研究. 物理学报, 2008, 57(7): 4182-4188. doi: 10.7498/aps.57.4182
    [19] 黄群星, 刘 冬, 王 飞, 严建华, 池 涌, 岑可法. 基于截断奇异值分解的三维火焰温度场重建研究. 物理学报, 2007, 56(11): 6742-6748. doi: 10.7498/aps.56.6742
    [20] 白 云, 刘新元, 何定武, 汝鸿羽, 齐 亮, 季敏标, 赵 巍, 谢飞翔, 聂瑞娟, 马 平, 戴远东, 王福仁. 在SQUID心磁测量中基于奇异值分解和自适应滤波的噪声消除法. 物理学报, 2006, 55(5): 2651-2656. doi: 10.7498/aps.55.2651
计量
  • 文章访问数:  471
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-15
  • 修回日期:  2025-02-05
  • 上网日期:  2025-02-17

/

返回文章
返回