搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

炉膛三维温度场重建中Tikhonov正则化和截断奇异值分解算法比较

谢正超 王飞 严建华 岑可法

引用本文:
Citation:

炉膛三维温度场重建中Tikhonov正则化和截断奇异值分解算法比较

谢正超, 王飞, 严建华, 岑可法

Comparative studies of Tikhonov regularization and truncated singular value decomposition in the three-dimensional flame temperature field reconstruction

Xie Zheng-Chao, Wang Fei, Yan Jian-Hua, Cen Ke-Fa
PDF
导出引用
  • 在煤粉锅炉诊断中火焰辐射能图像扮演着越来越重要的角色, 通过电荷耦合器件(CCD)获得的辐射能图像可以重建出炉内火焰三维温度场, CCD 用于获取视场角内的辐射能图像. 温度场重建的矩阵方程是一个严重病态的方程, 本文使用两种算法(Tikhonov正则化算法和截断奇异值分解(TSVD)算法)来重建温度场. 应用广义交叉检验算法来选取正确的正则化参数. 数值模拟的环境为一个10 m×10 m×10 m的三维炉膛, 系统被划分为10×10×10的1000个网格, 每个网格单元都是边长为1 m的立方体. 在正问题求解所得到的CCD接受信号基础上加上不同随机误差以模拟测量时的CCD接受信号. 研究两种算法重建后的温度重建误差、两者的重建时间, 以及最高温度的重建效果. 初步的研究结果显示, 一般情况下基于Tikhonov算法重建的温度场比基于TSVD算法重建的温度场误差要小, 计算所需时间短, 最高温度重建更准确.
    Radiative imaging of combustion flame in furnace of power plant plays an increasingly important role in combustion diagnosis. The flame radiation image taken by a charge-coupled device (CCD) camera can reconstruct three-dimensional flame temperature distribution in the furnace. CCD cameras are used for capturing the flame images to obtain the line-of-sight radiation intensities. The temperature reconstruction matrix equation is a seriously pathological equation. Thus the temperature field reconstruction problem is an ill-posed problem. The two algorithms (Tikhonov regularization and truncated singular value decomposition (TSVD)) for solving the temperature field reconstruction are introduced. The size of the numerical simulation system is 10 m × 10 m × 10 m, which is divided into 10 × 10 × 10 volume elements in the three dimensions. Each volume element is a unit cube. Generalized cross-validation (GCV) is used to select the correct regularization parameter. The measured data are simulated by adding different random errors to the exact solution of the direct problem. The reconstructed temperature deviation is calculated by the two algorithms separately. When the measuring errors are 0.05 and 0.10, the reconstruction errors based on Tikhonov are respectively 19.3% and 7.0%, less than those based on TSVD. When the measuring errors are 0, 0.01, 0.03 and 0.07, the differences between the two kinds of errors are all less than 3%. Both the algorithms can reconstruct the correct temperature field. The times required to reconstruct the temperature field by the two algorithms are compared and their effects of the maximum temperature are also compared. When the measuring errors are 0, 0.01, 0.03, 0.05, 0.07 and 0.1, the reconstruction times based on Tikhonov are respectively-0.0917,-0.049, 0.161, 0.002, 0.135 and 0.091 s, shorter than the reconstruction times based on TSVD. There is singular value decomposition (SVD) in TSVD. And this process takes more than 2 s. If the problem is more complicated, SVD takes much more time. The errors of the maximum reconstruction temperature under Tikhonov are smaller. And the position of the maximum reconstruction temperature under Tikhonov is near the position of the exact maximum temperature in space. The maximum reconstruction temperature under TSVD is not so good as that under Tikhonov. Preliminary results indicate that the Tikhonov-based reconstruction is slightly better than the TSVD-based reconstruction, especially in reconstruction error, reconstruction time, and effects of the maximum temperature.
      通信作者: 王飞, wangfei@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51276165)资助的课题.
      Corresponding author: Wang Fei, wangfei@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51276165).
    [1]

    Zhou H C 2005 Furnace Flame Visual Inspection Principle and Technology (Beijing: Science Press) p2 (in Chinese) [周怀春 2005 炉内火焰可视化检测原理与技术(北京: 科学出版社) 第2页]

    [2]

    Liu D, Wang F, Yan J H 2008 Int. J. Heat Mass Transfer 51 3434

    [3]

    Wang F, Huang Q X, Liu D 2008 Energy Fuels 22 1731

    [4]

    Smart J, Lu G, Yan Y 2010 Combust. Flame 157 1132

    [5]

    Yan Y, Lu G, Colechin M 2002 Fuel 81 647

    [6]

    Huang Q X, Wang F, Yan J H 2013 Opt. Commun. 292 2530

    [7]

    Feng Y X, Huang Q X Liang J H 2012 Acta Phys. Sin. 61 134702 (in Chinese) [冯云霄, 黄群星, 梁军辉 2012 物理学报 61 134702]

    [8]

    Han S D, Zhou H C, Sheng F 2000 Proc. CSEE 20 6771 (in Chinese) [韩曙东, 周怀春, 盛锋 2000 中国电机工程学报 20 6771]

    [9]

    Zhou H C, Han S D, Sheng F 2003 J. Chin. Soc. Power Eng. 23 2154 (in Chinese) [周怀春, 韩曙东, 盛锋 2003 动力工程学报 23 2154]

    [10]

    Lou C, Zhou H C 2007 Proc. CSEE 27 5256 (in Chinese) [娄春, 周怀春 2007 中国电机工程学报 27 5256]

    [11]

    Cheng Q, Zhang X Y, Wang Z C 2014 Heat Transfer Eng. 35 770

    [12]

    Huang Q X, Liu D, Wang F 2007 Acta Phys. Sin. 56 6742 (in Chinese) [黄群星, 刘冬, 王飞 2007 物理学报 56 6742]

    [13]

    Liu D, Wang F, Huang Q X 2007 Proc. CSEE 9 7277 (in Chinese) [刘冬, 王飞, 黄群星 2007 中国电机工程学报 9 7277]

    [14]

    Phillips D L 1962 J. Assoc. Comput. Mach. 9 8497

    [15]

    Tikhonov A N 1963 Soviet Math. Dokl. 4 1035

    [16]

    Tang Y, Prieur C, Girard A 2015 Automatica 57 110

    [17]

    Rajan M P, Reddy G D 2015 Appl. Math. Comput. 259 412

    [18]

    Hansen P C 1990 J. Sci. Stat. Comput. 11 503

    [19]

    Shea J D, Veen B, Hagness S C 2012 Trans. Biomed. Eng. 59 936

    [20]

    Wu Z M, Bian S F, Xiang C B 2013 Math. Probl. Eng. 2013 161834

    [21]

    Zhou H C, Han S D, Sheng F 2002 J. Quant. Spectrosc. Radiat. Transfer 72 361

    [22]

    Wang F, Liu D, Cen K F 2008 J. Quant. Spectrosc. Radiat. Transfer 109 2171

    [23]

    Hansen P C 2007 Regularization Tools version 4.0 for Matlab 7.3 manual (e-book) pp65-66

    [24]

    Mottershead J E, Friswell M I, Ahmadian H 1998 16th International Modal Analysis Conference Santa Barbara, CA, February 2-5, 1998

    [25]

    Hansen P C 1992 SIAM Rev. 34 561

  • [1]

    Zhou H C 2005 Furnace Flame Visual Inspection Principle and Technology (Beijing: Science Press) p2 (in Chinese) [周怀春 2005 炉内火焰可视化检测原理与技术(北京: 科学出版社) 第2页]

    [2]

    Liu D, Wang F, Yan J H 2008 Int. J. Heat Mass Transfer 51 3434

    [3]

    Wang F, Huang Q X, Liu D 2008 Energy Fuels 22 1731

    [4]

    Smart J, Lu G, Yan Y 2010 Combust. Flame 157 1132

    [5]

    Yan Y, Lu G, Colechin M 2002 Fuel 81 647

    [6]

    Huang Q X, Wang F, Yan J H 2013 Opt. Commun. 292 2530

    [7]

    Feng Y X, Huang Q X Liang J H 2012 Acta Phys. Sin. 61 134702 (in Chinese) [冯云霄, 黄群星, 梁军辉 2012 物理学报 61 134702]

    [8]

    Han S D, Zhou H C, Sheng F 2000 Proc. CSEE 20 6771 (in Chinese) [韩曙东, 周怀春, 盛锋 2000 中国电机工程学报 20 6771]

    [9]

    Zhou H C, Han S D, Sheng F 2003 J. Chin. Soc. Power Eng. 23 2154 (in Chinese) [周怀春, 韩曙东, 盛锋 2003 动力工程学报 23 2154]

    [10]

    Lou C, Zhou H C 2007 Proc. CSEE 27 5256 (in Chinese) [娄春, 周怀春 2007 中国电机工程学报 27 5256]

    [11]

    Cheng Q, Zhang X Y, Wang Z C 2014 Heat Transfer Eng. 35 770

    [12]

    Huang Q X, Liu D, Wang F 2007 Acta Phys. Sin. 56 6742 (in Chinese) [黄群星, 刘冬, 王飞 2007 物理学报 56 6742]

    [13]

    Liu D, Wang F, Huang Q X 2007 Proc. CSEE 9 7277 (in Chinese) [刘冬, 王飞, 黄群星 2007 中国电机工程学报 9 7277]

    [14]

    Phillips D L 1962 J. Assoc. Comput. Mach. 9 8497

    [15]

    Tikhonov A N 1963 Soviet Math. Dokl. 4 1035

    [16]

    Tang Y, Prieur C, Girard A 2015 Automatica 57 110

    [17]

    Rajan M P, Reddy G D 2015 Appl. Math. Comput. 259 412

    [18]

    Hansen P C 1990 J. Sci. Stat. Comput. 11 503

    [19]

    Shea J D, Veen B, Hagness S C 2012 Trans. Biomed. Eng. 59 936

    [20]

    Wu Z M, Bian S F, Xiang C B 2013 Math. Probl. Eng. 2013 161834

    [21]

    Zhou H C, Han S D, Sheng F 2002 J. Quant. Spectrosc. Radiat. Transfer 72 361

    [22]

    Wang F, Liu D, Cen K F 2008 J. Quant. Spectrosc. Radiat. Transfer 109 2171

    [23]

    Hansen P C 2007 Regularization Tools version 4.0 for Matlab 7.3 manual (e-book) pp65-66

    [24]

    Mottershead J E, Friswell M I, Ahmadian H 1998 16th International Modal Analysis Conference Santa Barbara, CA, February 2-5, 1998

    [25]

    Hansen P C 1992 SIAM Rev. 34 561

  • [1] 康哲铭, 纪金龙, 康品春, 刘君健, 吕艺晖, 郭鹭清. 基于伪逆法的数字温度计温度修正曲线重建算法. 物理学报, 2024, 73(19): 190701. doi: 10.7498/aps.73.20241104
    [2] 庞维煦, 李宁, 黄孝龙, 康杨, 李灿, 范旭东, 翁春生. 基于分数阶Tikhonov正则化的激光吸收光谱燃烧场二维重建光路优化研究. 物理学报, 2023, 72(3): 037801. doi: 10.7498/aps.72.20221731
    [3] 单良, 赵腾飞, 黄荟云, 洪波, 孔明. 基于阻尼LSQR-LMBC的火焰三维温度场重建. 物理学报, 2022, 71(4): 040701. doi: 10.7498/aps.71.20211421
    [4] 单良, 赵腾飞, 黄荟云, 洪波, 孔明. 基于阻尼LSQR-LMBC的火焰三维温度场重建. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211421
    [5] 王芙蓉, 杨帆, 张亚, 李世中, 王鹤峰. 基于奇异值分解的矩阵低秩近似量子算法. 物理学报, 2021, 70(15): 150201. doi: 10.7498/aps.70.20210411
    [6] 张泽峰, 黄丽莲, 项建弘, 刘帅. 新的具有宽参数范围的五维保守超混沌系统的动力学研究. 物理学报, 2021, 70(23): 230501. doi: 10.7498/aps.70.20210592
    [7] 夏正德, 宋娜, 刘宾, 潘晋孝, 闫文敏, 邵子惠. 基于字典学习的稠密光场重建算法. 物理学报, 2020, 69(6): 064201. doi: 10.7498/aps.69.20191621
    [8] 李宁, TuXin, 黄孝龙, 翁春生. 基于Tikhonov正则化参数矩阵的激光吸收光谱燃烧场二维重建光路设计方法. 物理学报, 2020, 69(22): 227801. doi: 10.7498/aps.69.20201144
    [9] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法. 物理学报, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [10] 何然, 黄思训, 周晨腾, 姜祝辉. 遗传算法结合正则化方法反演海洋大气波导. 物理学报, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [11] 郑安总, 冷永刚, 范胜波. 基于奇异值分解的随机共振特征提取研究. 物理学报, 2012, 61(21): 210503. doi: 10.7498/aps.61.210503
    [12] 张国基, 李璇, 刘清, 张夏衍. 基于广义信息域离散轨迹变换的随机数生成器. 物理学报, 2012, 61(6): 060502. doi: 10.7498/aps.61.060502
    [13] 刘冬, 严建华, 王飞, 黄群星, 池涌, 岑可法. 火焰烟黑三维温度场和浓度场同时重建实验研究. 物理学报, 2011, 60(6): 060701. doi: 10.7498/aps.60.060701
    [14] 支蓉, 龚志强, 王启光, 熊开国. 时间滞后对全球温度场关联性的影响. 物理学报, 2011, 60(8): 089202. doi: 10.7498/aps.60.089202
    [15] 李俊昌, 樊则宾. 彩色数字全息的非插值波面重建算法研究. 物理学报, 2010, 59(4): 2457-2461. doi: 10.7498/aps.59.2457
    [16] 宋伟, 侯建军, 李赵红, 黄亮. 一种基于Logistic混沌系统和奇异值分解的零水印算法. 物理学报, 2009, 58(7): 4449-4456. doi: 10.7498/aps.58.4449
    [17] 刘 冬, 王 飞, 黄群星, 严建华, 池 涌, 岑可法. 二维弥散介质温度场的快速重建. 物理学报, 2008, 57(8): 4812-4816. doi: 10.7498/aps.57.4812
    [18] 黄群星, 刘 冬, 王 飞, 严建华, 池 涌, 岑可法. 基于截断奇异值分解的三维火焰温度场重建研究. 物理学报, 2007, 56(11): 6742-6748. doi: 10.7498/aps.56.6742
    [19] 李国辉, 徐得名, 周世平. 随机性参数自适应的混沌同步. 物理学报, 2004, 53(2): 379-382. doi: 10.7498/aps.53.379
    [20] 傅盘铭, 叶佩弦. 激光场的随机性对简并四波混频的影响. 物理学报, 1985, 34(6): 737-744. doi: 10.7498/aps.34.737
计量
  • 文章访问数:  7209
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-16
  • 修回日期:  2015-08-27
  • 刊出日期:  2015-12-05

/

返回文章
返回