-
基于DAST晶体的太赫兹差频辐射源具有宽调谐、室温运转等优点,但DAST晶体熔点低、热导率低的特性使其在连续泵浦条件下热积累严重、晶体易损伤,这限制了其实际应用。本文理论研究了基于金刚石衬底的DAST晶体的热分布特性,实验分析了金刚石衬底对DAST晶体中热效应的改善。进一步,基于连续单频激光器与金刚石衬底DAST晶体搭建了差频太赫兹辐射源,其太赫兹波频率调谐范围为1.1~3 THz,在2.493 THz处获得最大输出功率为3.39 nW,30 min内太赫兹波的功率不稳定度为2.19%。该窄线宽、可调谐太赫兹辐射源在高精度光谱检测等领域具有较高的应用潜力。Terahertz (THz) wave has been widely investigated recently due to the perspective of reflecting fingerprint characteristic of samples. As a promising method, THz technology has attracted great interests in various applications, especially in biological imaging, environmental monitoring, non-destructive evaluation, spectroscopy and molecular analysis. To reveal the intramolecular vibration/rotation information of various compound, of which linewidth of absorption lines typically in GHz or even MHz range, THz wave with wide tunability, narrow-linewidth, high frequency accuracy as well as high power stability is required. Currently, the linewidth with GHz level and low SNR at higher frequency still restrict its further applications in reveal intramolecular information. In this paper, the thermal distribution characteristics of DAST crystals based on diamond substrates under continuous laser pumping conditions were theoretically studied by COMSOL Multiphysics, and the effectiveness of diamond substrates in dissipating heat from DAST crystals was experimentally verified. Then, a narrow linewidth and tunable continuous-wave terahertz source with organic crystal has been demonstrated. Two narrow-linewidth CW fiber lasers were used as the pump sources for difference frequency generation. The terahertz wave can be continuously tunable in the range of 1.1-3 THz. The maximum output power of 3.39 nW was obtained at 2.493 THz. The power fluctuation in 30 minutes was measured to be 2.19%. In addition, the generated THz wave has a high polarization extinction ratio of 9.44 dB. Using this CW-THz source for high-precision spectral detection of air with different humidity, the results correspond well with the gas absorption spectral lines in the Hitran database, proving that the CW-THz source has narrow linewidth, high frequency accuracy and stability. Therefore, it could promote the practical prospect of tunable CW-THz source, which will have good potential in THz high-precision spectroscopic detection and multispectral imaging.
-
[1] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26
[2] Sirtori C 2002 Nature 417 132
[3] Sterczewski L A, Westberg J, Yang Y, Burghoff D, Reno J, Hu Q, Wysocki G 2020 ACS Photonics 7 1082
[4] Stinson H T, Sternbach A, Najera O, Jing R, McLeod A S, Slusar T V, Mueller A, Anderegg L, Kim H T, Rozenberg M, Basov D N 2018 Nat. Commun. 9 3604
[5] Mu N, Yang C-Y, Ma K, Quan Y-L, Wang S, Lai Y, Li F, Wang Y-Y, Chen T-N, Xu D-G, Feng H 2022 Acta Physica Sinica 71 178702 (in Chinese) [穆宁, 杨川艳, 马康, 全玉莲, 王诗, 赖颖, 李飞, 王与烨, 陈图南, 徐德刚, 冯华 2016 物理学报 71 178702]
[6] Wang Y-W, Dong Z-W, Li H-Y, Zhou X, Luo Z-F 2016 Acta Physica Sinica 65 134101 (in Chinese) [王玉文, 董志伟, 李瀚宇, 周逊, 罗振飞 2016 物理学报 65 134101]
[7] Yang X, Zhao X, Yang K, Liu Y, Liu Y, Fu W, Luo Y 2016 Trends Biotechnol. 34 810
[8] Aghasi H, Naghavi S M H, Taba M T, Aseeri M A, Cathelin A, Afshari E 2020 Appl. Phys. Rev. 7 021302
[9] V. S. CherkasskJ B A K, V. V. Kubarevl, G. N. Kulipanov', G. L. Kruyshes, A. N. Matveenko',, A. K. Petrov' V M P, M. A. Scheglov', 0. A. Shevchenko', N. A. Vmokurov' 2004 Infrared Millim. W. 8 567
[10] Chhantyal-Pun R, Valavanis A, Keeley J T, Rubino P, Kundu I, Han Y, Dean P, Li L, Davies A G, Linfield E H 2018 Opt. Lett. 43 2225
[11] Mueller E R, Henschke R, Robotham W E, Newman L A, Laughman L M, Hart R A, Kennedy J, Pickett H M 2007 Appl. Optics 46 4907
[12] Chen K, Tang L, Xu D, Wang Y, Yan C, Nie G, Hu C, Wu B, Zhu J, Yao J 2021 ACS Photonics 8 3141
[13] Mansourzadeh S, Vogel T, Shalaby M, Wulf F, Saraceno C J 2021 Opt. Express 29 38946
[14] Lee A J, Pask H M 2014 Opt. Lett. 39 442
[15] He Y, Wang Y, Xu D, Nie M, Yan C, Tang L, Shi J, Feng J, Yan D, Liu H, Teng B, Feng H, Yao J 2017 Appl. Phys. B 124 16
[16] Chai Lu, Niu Yue, Li Yan-Feng, Hu Ming-Lie, Wang Qing-Yue Acta. Phys. Sin., 2016, 7 070702 (in Chinese) [柴路, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702]
[17] Tang M, Minamide H, Wang Y, Notake T, Ohno S, Ito H 2011 Opt. Express 19 779
[18] Walsh D, Stothard D J M, Edwards T J, Browne P G, Rae C E, Dunn M H 2009 J. Opt. Soc. Am. B. 26 1196
[19] Paul J R, Scheller M, Laurain A, Young A, Koch S W, Moloney J 2013 Opt. Lett. 38 3654
[20] Liu Huan, Xu De-Gang, Yao Jian-Quan Acta. Phys. Sin., 2008, 9 5662 (in Chinese) [刘欢, 徐德刚, 姚建铨 2008 物理学报 9 5662]
[21] Cunningham P D, Hayden L M 2010 Opt. Express 18 23620
[22] Zhao H, Tan Y, Wu T, Steinfeld G, Zhang Y, Zhang C, Zhang L, Shalaby M 2019 Appl. Phys. Lett. 114 241101
[23] Wang Z, Wang Y, Li H, Ge M, Xu D, Yao J 2023 Opt. Express 31 39030
[24] Rothman L S, Jacquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Chackerian C, Chance K, Coudert L H, Dana V, Devi V M, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Vander Auwera J, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139
计量
- 文章访问数: 71
- PDF下载量: 3
- 被引次数: 0