搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DAST晶体的连续太赫兹差频辐射源研究

王泽龙 王与烨 李海滨 张敬喜 徐德刚 姚建铨

引用本文:
Citation:

基于DAST晶体的连续太赫兹差频辐射源研究

王泽龙, 王与烨, 李海滨, 张敬喜, 徐德刚, 姚建铨

Tunable Continuous-Wave Terahertz Generator based on Difference Frequency Generation with DAST Crystal

Wang Ze-Long, Wang Yu-Ye, Li Hai-Bin, Zhang Jing-Xi, Xu De-Gang, Yao Jian-Quan
PDF
导出引用
  • 基于DAST晶体的太赫兹差频辐射源具有宽调谐、室温运转等优点,但DAST晶体熔点低、热导率低的特性使其在连续泵浦条件下热积累严重、晶体易损伤,这限制了其实际应用。本文理论研究了基于金刚石衬底的DAST晶体的热分布特性,实验分析了金刚石衬底对DAST晶体中热效应的改善。进一步,基于连续单频激光器与金刚石衬底DAST晶体搭建了差频太赫兹辐射源,其太赫兹波频率调谐范围为1.1~3 THz,在2.493 THz处获得最大输出功率为3.39 nW,30 min内太赫兹波的功率不稳定度为2.19%。该窄线宽、可调谐太赫兹辐射源在高精度光谱检测等领域具有较高的应用潜力。
    Terahertz (THz) wave has been widely investigated recently due to the perspective of reflecting fingerprint characteristic of samples. As a promising method, THz technology has attracted great interests in various applications, especially in biological imaging, environmental monitoring, non-destructive evaluation, spectroscopy and molecular analysis. To reveal the intramolecular vibration/rotation information of various compound, of which linewidth of absorption lines typically in GHz or even MHz range, THz wave with wide tunability, narrow-linewidth, high frequency accuracy as well as high power stability is required. Currently, the linewidth with GHz level and low SNR at higher frequency still restrict its further applications in reveal intramolecular information. In this paper, the thermal distribution characteristics of DAST crystals based on diamond substrates under continuous laser pumping conditions were theoretically studied by COMSOL Multiphysics, and the effectiveness of diamond substrates in dissipating heat from DAST crystals was experimentally verified. Then, a narrow linewidth and tunable continuous-wave terahertz source with organic crystal has been demonstrated. Two narrow-linewidth CW fiber lasers were used as the pump sources for difference frequency generation. The terahertz wave can be continuously tunable in the range of 1.1-3 THz. The maximum output power of 3.39 nW was obtained at 2.493 THz. The power fluctuation in 30 minutes was measured to be 2.19%. In addition, the generated THz wave has a high polarization extinction ratio of 9.44 dB. Using this CW-THz source for high-precision spectral detection of air with different humidity, the results correspond well with the gas absorption spectral lines in the Hitran database, proving that the CW-THz source has narrow linewidth, high frequency accuracy and stability. Therefore, it could promote the practical prospect of tunable CW-THz source, which will have good potential in THz high-precision spectroscopic detection and multispectral imaging.
  • [1]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [2]

    Sirtori C 2002 Nature 417 132

    [3]

    Sterczewski L A, Westberg J, Yang Y, Burghoff D, Reno J, Hu Q, Wysocki G 2020 ACS Photonics 7 1082

    [4]

    Stinson H T, Sternbach A, Najera O, Jing R, McLeod A S, Slusar T V, Mueller A, Anderegg L, Kim H T, Rozenberg M, Basov D N 2018 Nat. Commun. 9 3604

    [5]

    Mu N, Yang C-Y, Ma K, Quan Y-L, Wang S, Lai Y, Li F, Wang Y-Y, Chen T-N, Xu D-G, Feng H 2022 Acta Physica Sinica 71 178702 (in Chinese) [穆宁, 杨川艳, 马康, 全玉莲, 王诗, 赖颖, 李飞, 王与烨, 陈图南, 徐德刚, 冯华 2016 物理学报 71 178702]

    [6]

    Wang Y-W, Dong Z-W, Li H-Y, Zhou X, Luo Z-F 2016 Acta Physica Sinica 65 134101 (in Chinese) [王玉文, 董志伟, 李瀚宇, 周逊, 罗振飞 2016 物理学报 65 134101]

    [7]

    Yang X, Zhao X, Yang K, Liu Y, Liu Y, Fu W, Luo Y 2016 Trends Biotechnol. 34 810

    [8]

    Aghasi H, Naghavi S M H, Taba M T, Aseeri M A, Cathelin A, Afshari E 2020 Appl. Phys. Rev. 7 021302

    [9]

    V. S. CherkasskJ B A K, V. V. Kubarevl, G. N. Kulipanov', G. L. Kruyshes, A. N. Matveenko',, A. K. Petrov' V M P, M. A. Scheglov', 0. A. Shevchenko', N. A. Vmokurov' 2004 Infrared Millim. W. 8 567

    [10]

    Chhantyal-Pun R, Valavanis A, Keeley J T, Rubino P, Kundu I, Han Y, Dean P, Li L, Davies A G, Linfield E H 2018 Opt. Lett. 43 2225

    [11]

    Mueller E R, Henschke R, Robotham W E, Newman L A, Laughman L M, Hart R A, Kennedy J, Pickett H M 2007 Appl. Optics 46 4907

    [12]

    Chen K, Tang L, Xu D, Wang Y, Yan C, Nie G, Hu C, Wu B, Zhu J, Yao J 2021 ACS Photonics 8 3141

    [13]

    Mansourzadeh S, Vogel T, Shalaby M, Wulf F, Saraceno C J 2021 Opt. Express 29 38946

    [14]

    Lee A J, Pask H M 2014 Opt. Lett. 39 442

    [15]

    He Y, Wang Y, Xu D, Nie M, Yan C, Tang L, Shi J, Feng J, Yan D, Liu H, Teng B, Feng H, Yao J 2017 Appl. Phys. B 124 16

    [16]

    Chai Lu, Niu Yue, Li Yan-Feng, Hu Ming-Lie, Wang Qing-Yue Acta. Phys. Sin., 2016, 7 070702 (in Chinese) [柴路, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702]

    [17]

    Tang M, Minamide H, Wang Y, Notake T, Ohno S, Ito H 2011 Opt. Express 19 779

    [18]

    Walsh D, Stothard D J M, Edwards T J, Browne P G, Rae C E, Dunn M H 2009 J. Opt. Soc. Am. B. 26 1196

    [19]

    Paul J R, Scheller M, Laurain A, Young A, Koch S W, Moloney J 2013 Opt. Lett. 38 3654

    [20]

    Liu Huan, Xu De-Gang, Yao Jian-Quan Acta. Phys. Sin., 2008, 9 5662 (in Chinese) [刘欢, 徐德刚, 姚建铨 2008 物理学报 9 5662]

    [21]

    Cunningham P D, Hayden L M 2010 Opt. Express 18 23620

    [22]

    Zhao H, Tan Y, Wu T, Steinfeld G, Zhang Y, Zhang C, Zhang L, Shalaby M 2019 Appl. Phys. Lett. 114 241101

    [23]

    Wang Z, Wang Y, Li H, Ge M, Xu D, Yao J 2023 Opt. Express 31 39030

    [24]

    Rothman L S, Jacquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Chackerian C, Chance K, Coudert L H, Dana V, Devi V M, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Vander Auwera J, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139

  • [1] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, doi: 10.7498/aps.68.20191055
    [2] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和. 基于飞秒锁模光纤激光脉冲基频光的差频产生红外光梳. 物理学报, doi: 10.7498/aps.67.20172503
    [3] 谢仕永, 张小富, 杨程亮, 乐小云, 薄勇, 崔大复, 许祖彦. 周期极化KTiOPO4晶体和频单块非平面环形腔激光产生连续单频589nm黄光. 物理学报, doi: 10.7498/aps.65.094203
    [4] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月. 差频可调谐太赫兹技术的新进展. 物理学报, doi: 10.7498/aps.65.070702
    [5] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究. 物理学报, doi: 10.7498/aps.63.020702
    [6] 李忠洋, 邴丕彬, 徐德刚, 曹小龙, 姚建铨. 级联参量振荡产生太赫兹辐射的理论研究. 物理学报, doi: 10.7498/aps.62.084212
    [7] 黄敬国, 陆金星, 周炜, 童劲超, 黄志明, 褚君浩. 磷化镓高功率太赫兹共线差频源的研究. 物理学报, doi: 10.7498/aps.62.120704
    [8] 陈鹤鸣, 孟晴. 高效光子晶体太赫兹滤波器的设计. 物理学报, doi: 10.7498/aps.60.014202
    [9] 陆金星, 黄志明, 黄敬国, 王兵兵, 沈学民. 相位失配与材料吸收对利用GaSe差频产生太赫兹波功率影响的研究. 物理学报, doi: 10.7498/aps.60.024209
    [10] 钟凯, 姚建铨, 徐德刚, 张会云, 王鹏. 级联差频产生太赫兹辐射的理论研究. 物理学报, doi: 10.7498/aps.60.034210
    [11] 张戎, 曹俊诚. 光子晶体对太赫兹波的调制特性研究. 物理学报, doi: 10.7498/aps.59.3924
    [12] 李忠洋, 姚建铨, 李俊, 邴丕彬, 徐德刚, 王鹏. 基于闪锌矿晶体中受激电磁耦子散射产生可调谐太赫兹波的理论研究. 物理学报, doi: 10.7498/aps.59.6237
    [13] 王卓, 王与烨, 姚建铨, 王鹏. 周期结构GaAs晶体ps脉冲差频产生窄带THz辐射的研究. 物理学报, doi: 10.7498/aps.59.3249
    [14] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生. 物理学报, doi: 10.7498/aps.59.7892
    [15] 黄楠, 李雪峰, 刘红军, 夏彩鹏. 增益饱和对光学差频产生太赫兹辐射的功率和稳定性的影响. 物理学报, doi: 10.7498/aps.58.8326
    [16] 刘 欢, 徐德刚, 姚建铨. 基于GaSe和ZnGeP2晶体差频产生可调谐太赫兹辐射的理论研究. 物理学报, doi: 10.7498/aps.57.5662
    [17] 韩海年, 赵研英, 张 炜, 朱江峰, 王 鹏, 魏志义, 李师群. PPLN晶体差频测量飞秒激光脉冲的载波包络相移. 物理学报, doi: 10.7498/aps.56.2756
    [18] 孙 博, 姚建铨, 王 卓, 王 鹏. 利用各向同性半导体晶体差频产生可调谐THz辐射的理论研究. 物理学报, doi: 10.7498/aps.56.1390
    [19] 黄显玲, 夏宗炬, 邹英华. Hg蒸汽中通过双光子共振四波差频产生调谐真空紫外辐射. 物理学报, doi: 10.7498/aps.39.1385
    [20] 霍崇儒, 黄锡毅. 利用表面波的差频以产生远红外辐射. 物理学报, doi: 10.7498/aps.29.1581
计量
  • 文章访问数:  71
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-11

/

返回文章
返回