-
引力波的直接探测打开了认识宇宙的新窗口, 开辟了多信使天文学, 各种天文事件产生引力波的频段涵盖范围较大, 不同频段引力波的探测机理及方案不尽相同. 目前, 正在运行的地基引力波探测装置的探测频段主要集中在10 Hz—10 kHz范围, 为达到探测灵敏度需求, 要对激光强度噪声进行准确评估并通过光电反馈将其抑制到≤2.0×10–9 Hz–1/2@10 Hz以及≤4.0×10–7 Hz–1/2@10 kHz. 本文基于激光噪声机理分析, 通过探究极小噪声评估方案, 研发低噪声光电探测器, 对比前置放大器不同放大倍数对信号的噪声耦合, 编写上位机操控及数据处理程序, 从而构建了低噪声高精度集成化激光强度噪声评估系统. 实验结果表明, 前置放大器以及动态信号分析仪的整体电子学噪声为3.8×10–9 Hz–1/2@(10 Hz—10 kHz); 光电探测器电子学噪声为$ 1.4 \times {10^{ - 8}} {\text{V}}/\sqrt {{\text{Hz}}} $@10 Hz &$ 8.1 \times {10^{ - 9}}{\text{V}}/\sqrt {{\text{Hz}}} $@10 kHz, 通过标准正弦信号进行校准等措施, 检验了评估系统的准确性. 相关研究结果为制备高功率低噪声激光光源及引力波探测等领域提供了实验基础.The direct detection of gravitational waves has opened up a new window for understanding the universe and trailblazed multi-messenger astronomy. The frequency bands of gravitational waves generated by various astronomical events can cover a broadband range, and the detection mechanisms and schemes for gravitational waves in different frequency bands are different. For example, the ground-based gravitational wave detection has a frequency band ranging from 10 Hz to 10 kHz, which is based on Michelson interferometer. The space gravitational wave detection has a frequency band in a range of 0.1 mHz–1 Hz , which is based on space interferometer. The pulsar gravitational wave detection has a frequency band ranging from 1×10–9 Hz to 1×10–7 Hz, which is based on pulsar timing array. The next-generation ground-based gravitational wave project requires higher sensitivity to detect faint signals, necessitating an assessment system with minimal background noise to accurately measure the laser relative intensity noise. At present, the detection frequency band of ground-based gravitational wave detection devices in operation is mainly concentrated in a range of 10 Hz–10 kHz. To satisfy the detection sensitivity requirements, the laser relative intensity noise should be accurately evaluated and suppressed to ≤2.0×10–9 Hz–1/2 at 10 Hz and ≤4.0×10–7Hz–1/2 at 10 kHz by photoelectric feedback. In this work, an evaluation and characterization system is constructed for ground-based gravitational wave band laser intensity noise, which is based on low noise and high sensitivity photoelectric detection device and combined with LabVIEW and MATLAB algorithm programming for instrument control and data processing. This low noise evaluation system is used to test the background noise of fast Fourier transform (FFT) analyzer SR760, preamplifier SR560, photoelectric detector electronic noise and intensity noise of homemade optical fiber amplifier, and then the data extraction and image processing are carried out by LabVIEW and MATLAB algorithms, and finally the ground-based gravitational wave frequency band system is evaluated. The experimental results show that the whole electronic noise for the preamplifier SR560 and the FFT analyzer SR760 are lower than 3.8×10–9 Hz–1/2@(10 Hz–10 kHz). The electronic noise for the photodetector is lower than $ 1.4 \times {10^{ - 8}}{\text{V}}/\sqrt {{\text{Hz}}} $ at 10 Hz and $ 8.1 \times {10^{ - 9}}{\text{V}}/\sqrt {{\text{Hz}}} $ at 10 kHz, and the accuracy of the system is calibrated and tested by the standard sinusoidal signal. Finally, the noise of commercial laser is evaluated and compared with the factory data to verify the accuracy of the evaluation system. Related research, device and system development provide hardware, software and theoretical basis for preparing high-power low-noise laser light source and gravitational wave detection, and also provide the theoretical basis and evaluation criteria for detecting the ground-based gravitational wave .
-
Keywords:
- laser intensity noise evaluation system /
- gravitational wave detection /
- low-noise laser source /
- low-noise photodetector
-
图 3 地基引力波探测频段激光强度噪声评估系统实验装置示意图, 其中Laser为激光器; ISO为光隔离器; λ/4为λ/4波片; λ/2为λ/2波片; PBS为偏振分束棱镜; BS为分束棱镜; len为f = 50 mm透镜; PD为光电探测器; PA为前置放大器; FFT analyzer为傅里叶分析仪; OSC为示波器; Vref为参考电压源; PC为计算机
Fig. 3. Evaluation system for laser intensity noise at ground-based gravitational wave detection frequency band, where Laser is soild state laser, ISO: isolator, λ/4 is λ/4 waveplate, λ/2 is λ/2 waveplate, PBS is polarization beam splitter, BS is beam splitter, len is f = 50 mm len, PD is photodetector, PA is pre-amplifier, FFT analyzer is SR760, OSC is oscilloscope, Vref is voltage reference, PC is computer.
-
[1] Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 12 2Google Scholar
[2] Schmidt P 2019 J. Phys. Conf. Ser. 1468 012218
[3] Patrick K 2010 Ph. D. Dissertation (Hannover: Vom Fachbereich Physik der Universiät Hannover
[4] Anza S 2005 Classical Quant. Grav. 22 S125Google Scholar
[5] Rer N 2005 Ph. D Dissertation (Hannover: Vom Fachbereich Physik der Universiät Hannover
[6] Armano M, et al. (LIGO Scientific and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 231101Google Scholar
[7] 王在渊, 王洁浩, 李宇航, 柳强 2023 物理学报 72 054205Google Scholar
Wang Z Y, Wang J H, Li Y H, Liu Q 2023 Acta Phys. Sin. 72 054205Google Scholar
[8] Ran D 2024 J. Cosmol. Astropart. Phys. 2 16
[9] Daniel J, Andrew Z, Ryan M, Valentina D 2022 Astrophys. J. Lett. 1 L7
[10] Abbott B P, et al. (LIGO Scientific and Virgo Collaboration) 2016 Phys. Rev. Lett. 116 061102Google Scholar
[11] Antonino C 2023 EPJ Web of Conferences RICAP-22 280 03003Google Scholar
[12] Hofacker C 2020 Aerospace Am. 11 10
[13] 李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar
Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar
[14] 李卫, 谢超帮, 李庆回, 鞠明健, 武志学, 郑耀辉 2023 量子光学学报 29 040201
Li W, Xie C B, Li Q H, Ju M J, Wu Z X, Zheng Y H 2023 J. Quantum Optics 29 040201
[15] Gao L, Zheng L A, Lu B, Shi S P, Tian L, Zheng Y H 2024 Light Sci. Appl. 13 294Google Scholar
[16] 郭禧庆, 周静, 王晨曦, 秦琛, 郭成哲, 李刚, 张鹏飞, 张天才 2024 物理学报 73 050401Google Scholar
Guo X Q, Zhou J, Wang C X, Qin C, Guo C Z, Li G, Zhang P F, Zhang T C 2024 Acta Phys. Sin. 73 050401Google Scholar
[17] Vahlbruch H, Wilken D, Mehmet M 2018 Phys. Rev. Lett. 121 173601Google Scholar
[18] Acernese F, Agathos M. 2019 Phys. Rev. Lett. 123 2311081
[19] Benno W, Peter K, Rick S, Peter F 2011 LIGO-T050036-v4
[20] Rollins J, Ottaway D, Zucker M, Weiss R, Abbott R 2004 Opt. Lett. 29 1876Google Scholar
[21] Patrick K, Benno W, Karsten D 2009 Opt. Lett. 34 2912Google Scholar
[22] Jonas J, Patrick O, Benno W 2017 Opt. Lett. 42 755Google Scholar
[23] 李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 71 209501Google Scholar
Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y 2022 Acta Phys. Sin. 71 209501Google Scholar
[24] Michael T, Gerhard H 2006 Measurement 39 12Google Scholar
[25] Fabian M, Benno W 2022 Instruments 15 1
[26] Cooley J W, Tukey J W 1965 Math. Comput. 19 297Google Scholar
[27] Welch P D 1967 IEEE Trans. Audio Electroacoust. 15 70Google Scholar
[28] 张骥, 魏珊珊, 刘昊炜, 刘元煌, 姚波, 毛庆和 2021 中国激光 48 0301002Google Scholar
Zhang J, Wei S S, Liu H W, Liu Y H, Yao B, Mao Q H 2021 Chin. J. Lasers 48 0301002Google Scholar
[29] Benno W, Peter K, Rick S, Peter F 2011 LIGO-T050036-v4
[30] 郑立昂, 李番, 王嘉伟, 李健博, 高丽, 贺子洋, 尚鑫, 尹王保, 田龙, 杨文海, 郑耀辉 2023 光学学报 52 0552220Google Scholar
Zheng L A, Li F, Wang J W, Li J B, Gao L, He Z Y, Shang X, Yin W B, Tian L, Yang W H, Zheng Y H 2023 Acta Photonica Sin. 52 0552220Google Scholar
[31] Goßler S, Bertolini A, Born M, Chen Y, Dahl K, Gering D, Gräf C, Heinzel G, Hild S, Kawazoe F, Kranz O, Kühn G, Lück H, Mossavi K, Schnabel R, Somiya K, Strain K A, Taylor J R, Wanner A, Westphal T, Willke B, Danzmann K 2010 Classical Quant. Grav. 27 084023Google Scholar
[32] Patrick K, Frank S, Benno W, Karsten D 2007 Rev. Sci. Instrum. 78 073103Google Scholar
[33] Frank S, Patrick K, Michèle H, Benno W, Karsten D 2006 Opt. Lett. 13 2000
[34] Patrick K, Benno W, Karsten D 2009 Opt. Lett. 19 2912
[35] Jennrich O, Newton G, Skeldon K D, Hough J 2002 Opt. Com. 205 405Google Scholar
[36] 刘骏杨, 韩逸凡, 陈力荣, 赵琴, 武延鹏, 李林, 王雅君, 郑耀辉 2025 量子光学学报 3 040201
Liu J Y, Han Y F, Chen L R, Zhao Q, Wu Y P, Li L, Wang Y J, Zheng Y H 2024 J. Quantum Opt. 4 040201
计量
- 文章访问数: 253
- PDF下载量: 13
- 被引次数: 0