搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用相干制备的三能级原子介质实现低噪声弱光相位操控

关佳 顾翊晟 朱成杰 羊亚平

引用本文:
Citation:

利用相干制备的三能级原子介质实现低噪声弱光相位操控

关佳, 顾翊晟, 朱成杰, 羊亚平

Low-noise optical field phase-shifting manipulated using a coherently-prepared three-level atomic medium

Guan Jia, Gu Yi-Sheng, Zhu Cheng-Jie, Yang Ya-Ping
PDF
导出引用
  • 我们发现利用相干制备的三能级原子介质可实现低噪声弱光相位操控.基于两波混频效应,相干制备的原子系统在弱光相位操控方面有许多新特性,例如宽频范围内无损常数相位的实现以及无附加相位的吸收与放大等.通过同时锁定抽运光的光强和双光子失谐,我们发现探测光的吸收为零,且探测光的相位对于频率的变化十分缓慢,因而可以通过选择适当的系统参数在很宽的频率范围内实现无损π相位操控.同时,利用该系统我们可以在单光子水平下实现低噪声、无损的量子相位门,这个系统在光通信和信息处理领域有着重要的应用价值.
    We propose a multifunction phase-shifting manipulator with low noise at a single-photon level,by using a threelevel atomic scheme.This three-level system interacts with a strong pumping field and a weak probe field with a large detuning.Due to this large detuning,two lower states can be coherently prepared prior to the injection of the pump and probe fields.In our configuration,the duration of the pumping field is much longer than that of the probe field. By solving the Heisenberg-Langevin equations of our system under the steady state approximation,we calculate the linear susceptibility of the system and examine the quantum noise properties of the probe field in detail.We show that this scheme,which rests on the process of two-wave mixing with initial atomic coherence,exhibits many interesting properties that neither typical electromagnetically induced transparency (EIT) schemes nor active Raman gain (ARG) schemes possess.Although both EIT-and ARG-based schemes have been widely investigated in atomic medium,the direct generalizations of these schemes to the single/few photon limit prove to be more problematic.The low fidelity due to the significant probe-field attenuation in EIT medium and the large quantum noise due to the amplification of the probe field in an active Raman gain medium are the main obstacles that prohibit a high-fidelity,low-noise phase shifter from being realized in the single/few photon limit.Physically,this scheme can be viewed as a hybrid scheme in which two processes of different physical principles are allowed to interfere with each other to achieve many desired functionalities. For instance,it can be used as a lossless two-photon-broadband phase-shifter with suitable system parameters.It can also be used as an attenuator/amplifier and a total transparency with a zero phase shift.In particular,we show that by locking the pump field intensity and the two-photon detuning simultaneously a flat constant π-phase shift can be realized with unit probe fidelity in a broad probe field frequency range.Applying the quantum regression theorem,we calculate the noise spectrum of the outgoing probe field as a large phase shift is achieved,and show that this two-photon-insensitive π-phase shift may significantly reduce the quantum noise fluctuations associated with a Raman gain process,and have a lot of potential applications for quantum information processing and optical telecommunication.The realization of this broadband π-phase-shift with significantly reduced quantum noise fluctuations makes this scheme attractive for the realization of low-noise phase-gate/polarization-gate at single-photon level.
      Corresponding author: Zhu Cheng-Jie, cjzhu@tongji.edu.cn;yang_yaping@tongji.edu.cn ; Yang Ya-Ping, cjzhu@tongji.edu.cn;yang_yaping@tongji.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0302800, 2013CB632701), the National Natural Science Foundation of China (Grant Nos. 11504272, 11474221), and the Shanghai Science and Technology Committee, China (Grant No. 15YF1412400).
    [1]

    Ottaviani C, Vitali D, Artoni M, Cataliotti F, Tombesi P 2003 Phys. Rev. Lett. 90 197902

    [2]

    Fleischhauer M, Imamoğlu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [3]

    Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107

    [4]

    Hau L V, Harris S E, Dutton Z 1999 Nature 397 594

    [5]

    Petrosyan D, Kurizki G 2002 Phys. Rev. A 65 033833

    [6]

    Zhu C J, Deng L, Hagley E W 2014 Phys. Rev. A 90 063841

    [7]

    Deng L, Payne M G 2007 Phys. Rev. Lett. 98 253902

    [8]

    Jiang K J, Deng L, Payne M G 2006 Phys. Rev. A 74 041803

    [9]

    Tan C H, Huang G X 2014 Phys. Rev. A 89 033860

    [10]

    Huang G X, Hang C, Deng L 2008 Phys. Rev. A 77 011803

    [11]

    Hang C, Huang G X 2010 Opt. Express 18 2952

    [12]

    Zhu C J, Deng L, Hagley E W 2013 Phys. Rev. A 88 023854

    [13]

    Li R B, Zhu C J, Deng L, Hagley E W 2014 Appl. Phys. Lett. 105 161103

    [14]

    Bell W E, Bloom A L 1961 Appl. Phys. Lett. 6 280

    [15]

    Alzetta G, Gozzini A, Moi L, Orriols G 1976 Nuovo Cimento B 36 5

    [16]

    Alzetta G, Gozzini A, Moi L, Orriols G 1979 Nuovo Cimento B 52 209

    [17]

    Arimondo E, Orriols G 1976 Lett. Nuovo Cimento 17 333

    [18]

    Gray H R, Whitley R M, Stroud C R 1978 Opt. Lett. 3 218

    [19]

    Arimondo E 1996 Progress in Optics 35 257

    [20]

    Javan A 1957 Phys. Rev. 107 1579

    [21]

    Hänsch T W, Toschek P E 1970 Z. Phys. 236 213

    [22]

    Popova T Y, Popov A K, Rautian S G, Sokolovskii R I 1970 Sov. Phys. JETP 30 466

    [23]

    Kocharovskaya O A, Khanin Y I 1988 JETP Lett. 48 630

    [24]

    Harris S E 1989 Phys. Rev. Lett. 62 1033

    [25]

    Schmidt H, Imamoğlu A 1996 Opt. Lett. 21 1936

    [26]

    Lukin M D, Imamoğlu A 2000 Phys. Rev. Lett. 84 1419

    [27]

    Fleishhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [28]

    Deng L, Payne M G, Garrett W R 2004 Opt. Commun. 242 641

    [29]

    Deng L, Payne M G, Hagley E W 2004 Phys. Rev. A 70 063813

    [30]

    Deng L, Payne M G, Garrett W R 2006 Phys. Rep. 429 123

    [31]

    Zhang J X, Cai J, Bai Y F, Gao J R, Zhu S Y 2007 Phys. Rev. A 76 033814

    [32]

    Lu C P, Yuan C H, Zhang W P 2008 Acta Phys. Sin. 57 6976 (in Chinese)[鲁翠萍, 袁春华, 张卫平2008物理学报57 6976]

    [33]

    Peng A, Johnsson M, Bowen W P, Lam P K, Bachor H A, Hope J J 2005 Phys. Rev. A 71 033809

    [34]

    Chen Y C, Liao Y A, Chiu H Y, Su J J, Yu I A 2001 Phys. Rev. A 64 053806

    [35]

    Polzik E S, Carri J, Kimble H J 1992 Phys. Rev. Lett. 68 3020

    [36]

    Camparo J C 1998 J. Opt. Soc. Am. B 15 1177

  • [1]

    Ottaviani C, Vitali D, Artoni M, Cataliotti F, Tombesi P 2003 Phys. Rev. Lett. 90 197902

    [2]

    Fleischhauer M, Imamoğlu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [3]

    Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107

    [4]

    Hau L V, Harris S E, Dutton Z 1999 Nature 397 594

    [5]

    Petrosyan D, Kurizki G 2002 Phys. Rev. A 65 033833

    [6]

    Zhu C J, Deng L, Hagley E W 2014 Phys. Rev. A 90 063841

    [7]

    Deng L, Payne M G 2007 Phys. Rev. Lett. 98 253902

    [8]

    Jiang K J, Deng L, Payne M G 2006 Phys. Rev. A 74 041803

    [9]

    Tan C H, Huang G X 2014 Phys. Rev. A 89 033860

    [10]

    Huang G X, Hang C, Deng L 2008 Phys. Rev. A 77 011803

    [11]

    Hang C, Huang G X 2010 Opt. Express 18 2952

    [12]

    Zhu C J, Deng L, Hagley E W 2013 Phys. Rev. A 88 023854

    [13]

    Li R B, Zhu C J, Deng L, Hagley E W 2014 Appl. Phys. Lett. 105 161103

    [14]

    Bell W E, Bloom A L 1961 Appl. Phys. Lett. 6 280

    [15]

    Alzetta G, Gozzini A, Moi L, Orriols G 1976 Nuovo Cimento B 36 5

    [16]

    Alzetta G, Gozzini A, Moi L, Orriols G 1979 Nuovo Cimento B 52 209

    [17]

    Arimondo E, Orriols G 1976 Lett. Nuovo Cimento 17 333

    [18]

    Gray H R, Whitley R M, Stroud C R 1978 Opt. Lett. 3 218

    [19]

    Arimondo E 1996 Progress in Optics 35 257

    [20]

    Javan A 1957 Phys. Rev. 107 1579

    [21]

    Hänsch T W, Toschek P E 1970 Z. Phys. 236 213

    [22]

    Popova T Y, Popov A K, Rautian S G, Sokolovskii R I 1970 Sov. Phys. JETP 30 466

    [23]

    Kocharovskaya O A, Khanin Y I 1988 JETP Lett. 48 630

    [24]

    Harris S E 1989 Phys. Rev. Lett. 62 1033

    [25]

    Schmidt H, Imamoğlu A 1996 Opt. Lett. 21 1936

    [26]

    Lukin M D, Imamoğlu A 2000 Phys. Rev. Lett. 84 1419

    [27]

    Fleishhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [28]

    Deng L, Payne M G, Garrett W R 2004 Opt. Commun. 242 641

    [29]

    Deng L, Payne M G, Hagley E W 2004 Phys. Rev. A 70 063813

    [30]

    Deng L, Payne M G, Garrett W R 2006 Phys. Rep. 429 123

    [31]

    Zhang J X, Cai J, Bai Y F, Gao J R, Zhu S Y 2007 Phys. Rev. A 76 033814

    [32]

    Lu C P, Yuan C H, Zhang W P 2008 Acta Phys. Sin. 57 6976 (in Chinese)[鲁翠萍, 袁春华, 张卫平2008物理学报57 6976]

    [33]

    Peng A, Johnsson M, Bowen W P, Lam P K, Bachor H A, Hope J J 2005 Phys. Rev. A 71 033809

    [34]

    Chen Y C, Liao Y A, Chiu H Y, Su J J, Yu I A 2001 Phys. Rev. A 64 053806

    [35]

    Polzik E S, Carri J, Kimble H J 1992 Phys. Rev. Lett. 68 3020

    [36]

    Camparo J C 1998 J. Opt. Soc. Am. B 15 1177

  • [1] 范洪义, 吴泽. 介观电路中量子纠缠的经典对应. 物理学报, 2022, 71(1): 010302. doi: 10.7498/aps.71.20210992
    [2] 范洪义, 吴泽. 介观电路中量子纠缠的经典对应. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210992
    [3] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应. 物理学报, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [4] 王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉. 光学谐振腔的传输特性. 物理学报, 2021, 70(20): 204202. doi: 10.7498/aps.70.20210234
    [5] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响. 物理学报, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [6] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [7] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展. 物理学报, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [8] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [9] 杨光, 廉保旺, 聂敏. 多跳噪声量子纠缠信道特性及最佳中继协议. 物理学报, 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [10] 黄建衡, 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨. 硬X射线微分相衬成像的噪声特性分析. 物理学报, 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [11] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [12] 吉选芒, 姜其畅, 刘劲松. 光折变非相干耦合空间孤子族统一理论. 物理学报, 2012, 61(7): 074205. doi: 10.7498/aps.61.074205
    [13] 吉选芒, 姜其畅, 刘劲松. 含分压电阻的非相干耦合光折变屏蔽光伏空间孤子对. 物理学报, 2010, 59(7): 4701-4706. doi: 10.7498/aps.59.4701
    [14] 鲁翠萍, 袁春华, 张卫平. 受激拉曼增益介质中的量子噪声特性研究. 物理学报, 2008, 57(11): 6976-6981. doi: 10.7498/aps.57.6976
    [15] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究. 物理学报, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [16] 杨 光, 陈正豪. 掺Ag纳米颗粒的BaTiO3复合薄膜的非线性光学特性. 物理学报, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [17] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [18] 张明昕, 吴克琛, 刘彩萍, 韦永勤. 密度泛函交换关联势与过渡金属化合物光学非线性的计算研究. 物理学报, 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
    [19] 万琳, 刘素梅, 刘三秋. T-C模型中虚光子过程对光场压缩效应的影响. 物理学报, 2002, 51(1): 84-90. doi: 10.7498/aps.51.84
    [20] 周文远, 田建国, 臧维平, 张春平, 张光寅, 王肇圻. 厚非线性介质瞬态热光非线性效应的研究. 物理学报, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
计量
  • 文章访问数:  3362
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-26
  • 修回日期:  2016-08-16
  • 刊出日期:  2017-01-20

利用相干制备的三能级原子介质实现低噪声弱光相位操控

    基金项目: 国家重点基础研究发展计划(批准号:2016YFA0302800,2013CB632701)、国家自然科学基金(批准号:11504272,11474221)和上海科学技术委员会(批准号:15YF1412400)资助的课题.

摘要: 我们发现利用相干制备的三能级原子介质可实现低噪声弱光相位操控.基于两波混频效应,相干制备的原子系统在弱光相位操控方面有许多新特性,例如宽频范围内无损常数相位的实现以及无附加相位的吸收与放大等.通过同时锁定抽运光的光强和双光子失谐,我们发现探测光的吸收为零,且探测光的相位对于频率的变化十分缓慢,因而可以通过选择适当的系统参数在很宽的频率范围内实现无损π相位操控.同时,利用该系统我们可以在单光子水平下实现低噪声、无损的量子相位门,这个系统在光通信和信息处理领域有着重要的应用价值.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回