搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Ga2O3-SiC-Ag多层结构的介电常数近零超低开关阈值光学双稳态器件

胡生润 季学强 王进进 阎结昀 张天悦 李培刚

引用本文:
Citation:

基于Ga2O3-SiC-Ag多层结构的介电常数近零超低开关阈值光学双稳态器件

胡生润, 季学强, 王进进, 阎结昀, 张天悦, 李培刚

Ultralow switching threshold optical bistable devices based on epsilon-near-zero Ga2O3-SiC-Ag multilayer structures

Hu Sheng-Run, Ji Xue-Qiang, Wang Jin-Jin, Yan Jie-Yun, Zhang Tian-Yue, Li Pei-Gang
PDF
HTML
导出引用
  • 光学双稳态这一非线性光学现象因其在全光系统中的巨大应用潜力而备受关注. 然而微弱的非线性响应往往需要巨大的输入功率才能实现光学双稳态, 导致其实用性不强. 本文基于Ga2O3-SiC-Ag的金属-介电材料多层结构, 在实现介电常数近零的大场增强的同时, 还引入了具有大非线性系数的材料, 并基于有限元法研究了介电常数近零层的厚度和长度对光学双稳态的影响. 研究结果表明, 光学双稳态随介电常数近零层的厚度和长度的增大而变得愈发显著, 在通信波段的开关阈值低至约 10–6 W/cm2, 与之前报道的基于介电常数近零材料的光学双稳态相比, 降低了9个数量级, 展现了在光子集成电路产业化中的巨大应用潜力.
    Optical bistability has attracted much attention due to its enormous potential applications in all-optical operation and signal processing. However, the weak nonlinear responses typically require huge pump power to reach the threshold of the optical bistability, thus hindering the real applications. In this study, we propose an efficient optical bistable metamaterial, which is composed of multilayer Ga2O3-SiC-Ag metal-dielectric nanostructures. We not only use the epsilon-near-zero (ENZ) with SiC-Ag thin layers to enhance the substantial field, but also incorporate the SiC material to increase its significant optical nonlinear coefficient. In the structural design, the introduction of Ga2O3 layer facilitates the light field concentration, contributing to the further reduction in threshold power for optical bistability, and also conducing to the improvement of the physical and chemical stability of the device. The influences of the thickness and length of the ENZ layer on the optical bistability are systematically investigated by using the finite element method. The results demonstrate that optical bistability becomes more pronounced with the increase of the thickness and length of ENZ layer, exhibiting a bistability switching threshold as low as ~10–6 W/cm2 in the telecommunication band. Comparing with the previously reported optical bistability based on ENZ mechanism, the threshold shows a significant reduction by 9 orders of magnitude, demonstrating great application potential in the fields of semiconductor devices and photonic integrated circuits.
      通信作者: 张天悦, tianyue_zhang@bupt.edu.cn ; 李培刚, pgli@bupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51572241)、北京邮电大学博士生创新基金(批准号: CX2023301)和中央高校基本科研业务费专项基金(批准号: 2023RC87)资助的课题.
      Corresponding author: Zhang Tian-Yue, tianyue_zhang@bupt.edu.cn ; Li Pei-Gang, pgli@bupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51572241), the BUPT Excellent Ph.D. Students Foundation, China (Grant No. CX2023301), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2023RC87).
    [1]

    董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙 2016 物理学报 65 114207Google Scholar

    1] Dong L J, Xue C H, Sun Y, Deng F S, Shi Y L 2016 Acta Phys. Sin. 65 114207Google Scholar

    [2]

    张强, 周胜, 励强华, 王选章, 付淑芳 2012 物理学报 61 157501Google Scholar

    Zhang Q, Zhou S, Li Q H, Wang X Z, Fu S F 2012 Acta Phys. Sin. 61 157501Google Scholar

    [3]

    Bassani F, Liedl G L, Wyder P 2005 Encyclopedia of Condensed Matter Physics (Oxford: Elsevier) pp147–152

    [4]

    Keshtkar P, Miri M, Yasrebi N 2021 Appl. Opt. 60 7234Google Scholar

    [5]

    Hu X Y, Jiang P, Ding C Y, Yang H, Gong Q H 2008 Nat. Photonics 2 185Google Scholar

    [6]

    Liu C W, Liu Y, Du L, Su W J, Wu H, Li Y 2023 Opt. Express 31 9236Google Scholar

    [7]

    Li Y N, Chen Y Y, Wan R G, Yan H W 2019 Phys. Lett. A 383 2248Google Scholar

    [8]

    Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M 2012 Nat. Photonics 6 248Google Scholar

    [9]

    Carmichael H J 1993 Phys. Rev. Lett. 70 2273Google Scholar

    [10]

    Gibbs H M, McCall S L, Gossard A C, Passner A, Wiegmann W, Venkatesan T N C 1979 Laser Spectroscopy IV (Berlin: Heidelberg) pp441–450

    [11]

    Koenderink A F, Alù A, Polman A 2015 Science 348 516Google Scholar

    [12]

    Powell K, Wang J, Shams-Ansari A, Liao B K, Meng D B, Sinclair N, Li L W, Deng J D, Lončar M, Yi X K 2022 Opt. Express 30 34149Google Scholar

    [13]

    Peng Y X, Xu J, Dong H, Dai X Y, Jiang J, Qian S Y, Jiang L Y 2020 Opt. Express 28 34948Google Scholar

    [14]

    Atorf B, Muehlenbernd H, Zentgraf T, Kitzerow H 2020 Opt. Express 28 8898Google Scholar

    [15]

    Vassant S, Hugonin J-P, Marquier F, Greffet J-J 2012 Opt. Express 20 23971Google Scholar

    [16]

    Hendrickson J R, Vangala S, Dass C, Gibson R, Goldsmith J, Leedy K, Walker Jr D E, Cleary J W, Kim W, Guo J 2018 ACS Photonics 5 776Google Scholar

    [17]

    郭绮琪, 陈溢杭 2021 物理学报 70 187303Google Scholar

    Guo Q Q, Chen Y H 2021 Acta Phys. Sin. 70 187303Google Scholar

    [18]

    Campione S, Brener I, Marquier F 2015 Phys. Rev. B 91 121408Google Scholar

    [19]

    Vassant S, Archambault A, Marquier F, Pardo F, Gennser U, Cavanna A, Pelouard J L, Greffet J J 2012 Phys. Rev. Lett. 109 237401Google Scholar

    [20]

    Kim M, Kim S, Kim S 2019 Sci. Rep. 9 6552Google Scholar

    [21]

    Wang R, Hu F, Meng Y T, Gong M, Liu Q L 2023 Opt. Lett. 48 1371Google Scholar

    [22]

    Xu J, Peng Y X, Jiang J, Qian S Y, Jiang L Y 2023 Opt. Lett. 48 3235Google Scholar

    [23]

    Ding F, Yang Y, Deshpande R A, Bozhevolnyi S I 2018 Nanophotonics 7 1129Google Scholar

    [24]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar

    [25]

    Chen L, Shakya J, Lipson M 2006 Opt. Lett. 31 2133Google Scholar

    [26]

    Sanchis P, Blasco J, Martínez A, Martí J 2007 J. Lightwave Technol. 25 1298Google Scholar

    [27]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [28]

    Ji X Q, Liu M Y, Yan Z Y, Li S, Liu Z, Qi X H, Yuan J Y, Wang J J, Zhao Y C, Tang W H 2023 IEEE Trans. Electron Devices 70 4236Google Scholar

    [29]

    董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平 2023 物理学报 72 097302Google Scholar

    Dong D M, Wang C, Zhang Q Y, Zhang T, Yang Y T, Xia H C, Wang Y H, Wu Z P 2023 Acta Phys. Sin. 72 097302Google Scholar

    [30]

    Wang J J, Ji X Q, Yan Z Y, Yan X, Lu C, Li Z T, Qi S, Li S, Qi X H, Zhang S R 2023 Mater. Sci. Semicond. Process. 159 107372Google Scholar

    [31]

    Ji X Q, Lu C, Yan Z Y, Shan L, Yan X, Wang J J, Yue J Y, Qi X H, Liu Z, Tang W H, Li P G 2022 J. Phys. D: Appl. Phys. 55 443002

    [32]

    Guo B, Zhang Z S, Huo Y Y, Wang S Y, Ning T Y 2023 Chin. Opt. Lett. 21 013602Google Scholar

    [33]

    De Leonardis F, Soref R A, Passaro V M N 2017 Sci. Rep. 7 40924Google Scholar

    [34]

    Borshch A, Brodyn M, Volkov V I, Rudenko V I, Lyakhovetskii V, Semenov V, Puzikov V 2008 JETP Lett. 88 386Google Scholar

    [35]

    Brodyn M, Volkov V, Lyakhovetskii V, Rudenko V, Puzilkov V, Semenov A 2012 J. Exp. Theor. Phys. 114 205Google Scholar

    [36]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [37]

    Larruquert J I, PérezMarín A P, García Cortés S, Rodríguez de Marcos L, Aznárez J A, Méndez J A 2011 JOSA A 28 2340Google Scholar

    [38]

    Silvester P P, Ferrari R L 1996 Finite Elements for Electrical Engineers (Cambridge University Press

    [39]

    Jin J M 2015 The Finite Element Method in Electromagnetics (John Wiley & Sons

    [40]

    Lu J, Thiel D V 2000 IEEE Trans. Magn. 36 1000Google Scholar

    [41]

    Selleri S 2003 IEEE Antennas Propag. Mag. 45 86Google Scholar

    [42]

    Bhaumik I, Bhatt R, Ganesamoorthy S, Saxena A, Karnal A, Gupta P, Sinha A, Deb S 2011 Appl. Opt. 50 6006Google Scholar

    [43]

    Pearton S, Yang J, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [44]

    Gosciniak J, Hu Z, Thomaschewski M, Sorger V J, Khurgin J B 2023 Laser Photonics Rev. 17 2200723Google Scholar

  • 图 1  (a) 基于ENZ材料(Ga2O3-SiC-Ag)的光学双稳态的工作原理图; (b) 多层光学双稳态器件的几何特性图

    Fig. 1.  (a) The working principle diagram of an optical bistable based on ENZ material (Ga2O3-SiC-Ag); (b) the proposed multi-layered optical bistable device’s geometric characteristics.

    图 2  (a) 正负介电常数的光学相图; (b) Ag填充分数为0.1的多层结构平行介电常数$ {\varepsilon }_{//} $的实部和虚部

    Fig. 2.  (a) Optical phase diagram of the positive and negative permittivities; (b) real and imaginary parts of the parallel ($ {\varepsilon }_{//} $) permittivities for the multilayer structure with a Ag fraction of 0.1.

    图 3  电场在器件中的空间分布 (a) 普通模式(1550 nm); (b) ENZ模式(1350 nm). Y方向电场振幅分布 (c) 普通模式(1550 nm); (d) ENZ模式(1350 nm)

    Fig. 3.  The spatial distribution of the electric field in the device: (a) Normal mode (1550 nm); (b) ENZ mode (1350 nm). The amplitude distribution of the electric field in the Y direction: (c) Normal mode (1550 nm); (d) ENZ mode (1350 nm).

    图 4  ENZ层厚H为10 nm时, 不同SiC-Ag层的对数下基于ENZ模式的光学双稳态曲线 (a) 40组; (b) 60组; (c) 80组

    Fig. 4.  When the ENZ layer thickness H is 10 nm, optical bistable curves are obtained for varying quantities of SiC-Ag pairs: (a) 40 pairs; (b) 60 pairs; (c) 80 pairs.

    图 5  电场在器件中的空间分布 (a) 普通模式(1700 nm); (b) ENZ模式 (1400 nm). Y方向电场振幅分布 (c) 普通模式(1700 nm); (d) ENZ模式(1400 nm)

    Fig. 5.  The spatial distribution of the electric field in the device: (a) Normal mode (1700 nm); (b) ENZ mode (1400 nm). The amplitude distribution of the electric field in the Y direction: (c) Normal mode (1700 nm); (d) ENZ mode (1400 nm).

    图 6  ENZ层厚H为20 nm时, 不同SiC-Ag层的对数下基于ENZ模式的光学双稳态曲线 (a) 40组; (b) 60组; (c) 80组

    Fig. 6.  When the thickness H of the ENZ layer is 20 nm, optical bistable curves are obtained for varying quantities of SiC-Ag pairs: (a) 40 pairs; (b) 60 pairs; (c) 80 pairs.

  • [1]

    董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙 2016 物理学报 65 114207Google Scholar

    1] Dong L J, Xue C H, Sun Y, Deng F S, Shi Y L 2016 Acta Phys. Sin. 65 114207Google Scholar

    [2]

    张强, 周胜, 励强华, 王选章, 付淑芳 2012 物理学报 61 157501Google Scholar

    Zhang Q, Zhou S, Li Q H, Wang X Z, Fu S F 2012 Acta Phys. Sin. 61 157501Google Scholar

    [3]

    Bassani F, Liedl G L, Wyder P 2005 Encyclopedia of Condensed Matter Physics (Oxford: Elsevier) pp147–152

    [4]

    Keshtkar P, Miri M, Yasrebi N 2021 Appl. Opt. 60 7234Google Scholar

    [5]

    Hu X Y, Jiang P, Ding C Y, Yang H, Gong Q H 2008 Nat. Photonics 2 185Google Scholar

    [6]

    Liu C W, Liu Y, Du L, Su W J, Wu H, Li Y 2023 Opt. Express 31 9236Google Scholar

    [7]

    Li Y N, Chen Y Y, Wan R G, Yan H W 2019 Phys. Lett. A 383 2248Google Scholar

    [8]

    Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M 2012 Nat. Photonics 6 248Google Scholar

    [9]

    Carmichael H J 1993 Phys. Rev. Lett. 70 2273Google Scholar

    [10]

    Gibbs H M, McCall S L, Gossard A C, Passner A, Wiegmann W, Venkatesan T N C 1979 Laser Spectroscopy IV (Berlin: Heidelberg) pp441–450

    [11]

    Koenderink A F, Alù A, Polman A 2015 Science 348 516Google Scholar

    [12]

    Powell K, Wang J, Shams-Ansari A, Liao B K, Meng D B, Sinclair N, Li L W, Deng J D, Lončar M, Yi X K 2022 Opt. Express 30 34149Google Scholar

    [13]

    Peng Y X, Xu J, Dong H, Dai X Y, Jiang J, Qian S Y, Jiang L Y 2020 Opt. Express 28 34948Google Scholar

    [14]

    Atorf B, Muehlenbernd H, Zentgraf T, Kitzerow H 2020 Opt. Express 28 8898Google Scholar

    [15]

    Vassant S, Hugonin J-P, Marquier F, Greffet J-J 2012 Opt. Express 20 23971Google Scholar

    [16]

    Hendrickson J R, Vangala S, Dass C, Gibson R, Goldsmith J, Leedy K, Walker Jr D E, Cleary J W, Kim W, Guo J 2018 ACS Photonics 5 776Google Scholar

    [17]

    郭绮琪, 陈溢杭 2021 物理学报 70 187303Google Scholar

    Guo Q Q, Chen Y H 2021 Acta Phys. Sin. 70 187303Google Scholar

    [18]

    Campione S, Brener I, Marquier F 2015 Phys. Rev. B 91 121408Google Scholar

    [19]

    Vassant S, Archambault A, Marquier F, Pardo F, Gennser U, Cavanna A, Pelouard J L, Greffet J J 2012 Phys. Rev. Lett. 109 237401Google Scholar

    [20]

    Kim M, Kim S, Kim S 2019 Sci. Rep. 9 6552Google Scholar

    [21]

    Wang R, Hu F, Meng Y T, Gong M, Liu Q L 2023 Opt. Lett. 48 1371Google Scholar

    [22]

    Xu J, Peng Y X, Jiang J, Qian S Y, Jiang L Y 2023 Opt. Lett. 48 3235Google Scholar

    [23]

    Ding F, Yang Y, Deshpande R A, Bozhevolnyi S I 2018 Nanophotonics 7 1129Google Scholar

    [24]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar

    [25]

    Chen L, Shakya J, Lipson M 2006 Opt. Lett. 31 2133Google Scholar

    [26]

    Sanchis P, Blasco J, Martínez A, Martí J 2007 J. Lightwave Technol. 25 1298Google Scholar

    [27]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [28]

    Ji X Q, Liu M Y, Yan Z Y, Li S, Liu Z, Qi X H, Yuan J Y, Wang J J, Zhao Y C, Tang W H 2023 IEEE Trans. Electron Devices 70 4236Google Scholar

    [29]

    董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平 2023 物理学报 72 097302Google Scholar

    Dong D M, Wang C, Zhang Q Y, Zhang T, Yang Y T, Xia H C, Wang Y H, Wu Z P 2023 Acta Phys. Sin. 72 097302Google Scholar

    [30]

    Wang J J, Ji X Q, Yan Z Y, Yan X, Lu C, Li Z T, Qi S, Li S, Qi X H, Zhang S R 2023 Mater. Sci. Semicond. Process. 159 107372Google Scholar

    [31]

    Ji X Q, Lu C, Yan Z Y, Shan L, Yan X, Wang J J, Yue J Y, Qi X H, Liu Z, Tang W H, Li P G 2022 J. Phys. D: Appl. Phys. 55 443002

    [32]

    Guo B, Zhang Z S, Huo Y Y, Wang S Y, Ning T Y 2023 Chin. Opt. Lett. 21 013602Google Scholar

    [33]

    De Leonardis F, Soref R A, Passaro V M N 2017 Sci. Rep. 7 40924Google Scholar

    [34]

    Borshch A, Brodyn M, Volkov V I, Rudenko V I, Lyakhovetskii V, Semenov V, Puzikov V 2008 JETP Lett. 88 386Google Scholar

    [35]

    Brodyn M, Volkov V, Lyakhovetskii V, Rudenko V, Puzilkov V, Semenov A 2012 J. Exp. Theor. Phys. 114 205Google Scholar

    [36]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [37]

    Larruquert J I, PérezMarín A P, García Cortés S, Rodríguez de Marcos L, Aznárez J A, Méndez J A 2011 JOSA A 28 2340Google Scholar

    [38]

    Silvester P P, Ferrari R L 1996 Finite Elements for Electrical Engineers (Cambridge University Press

    [39]

    Jin J M 2015 The Finite Element Method in Electromagnetics (John Wiley & Sons

    [40]

    Lu J, Thiel D V 2000 IEEE Trans. Magn. 36 1000Google Scholar

    [41]

    Selleri S 2003 IEEE Antennas Propag. Mag. 45 86Google Scholar

    [42]

    Bhaumik I, Bhatt R, Ganesamoorthy S, Saxena A, Karnal A, Gupta P, Sinha A, Deb S 2011 Appl. Opt. 50 6006Google Scholar

    [43]

    Pearton S, Yang J, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [44]

    Gosciniak J, Hu Z, Thomaschewski M, Sorger V J, Khurgin J B 2023 Laser Photonics Rev. 17 2200723Google Scholar

  • [1] 李昀衡, 喻可, 朱天宇, 于桐, 单思超, 谷亚舟, 李志曈. 拓扑层结构中的光学双稳态及其在光神经网络中的应用. 物理学报, 2024, 73(16): 164208. doi: 10.7498/aps.73.20240569
    [2] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响. 物理学报, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [3] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应. 物理学报, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [4] 刘志伟, 张斌, 陈彧. 二维纳米材料及其衍生物在激光防护领域中的应用. 物理学报, 2020, 69(18): 184201. doi: 10.7498/aps.69.20200313
    [5] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [6] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [7] 陈华俊. 基于石墨烯光力系统的非线性光学效应及非线性光学质量传感. 物理学报, 2020, 69(13): 134203. doi: 10.7498/aps.69.20191745
    [8] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展. 物理学报, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [9] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [10] 董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙. 单负材料异质结构中损耗诱导的场局域增强和光学双稳态. 物理学报, 2016, 65(11): 114207. doi: 10.7498/aps.65.114207
    [11] 陈卫军, 卢克清, 惠娟利, 王春香, 于会敏, 胡凯. LiNbO3晶体界面非线性表面波的研究. 物理学报, 2015, 64(1): 014204. doi: 10.7498/aps.64.014204
    [12] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [13] 杨金金, 李慧军, 文文, 黄国翔. n型主动拉曼增益原子介质中的光学双稳态. 物理学报, 2012, 61(22): 224204. doi: 10.7498/aps.61.224204
    [14] 刘均海, 万勇, 韩文娟, 杨红卫, 张怀金, 王继扬, Petrov Valentin. 掺Yb钒酸盐晶体激光振荡中的光学双稳态现象研究. 物理学报, 2010, 59(1): 293-299. doi: 10.7498/aps.59.293
    [15] 毛庆和, 冯素娟, 蒋 建, 朱宗玖, 刘文清. 基于FLM的L波段双波长EDFL的双稳态变换. 物理学报, 2007, 56(1): 296-300. doi: 10.7498/aps.56.296
    [16] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究. 物理学报, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [17] 杨 光, 陈正豪. 掺Ag纳米颗粒的BaTiO3复合薄膜的非线性光学特性. 物理学报, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [18] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [19] 陈 峻, 刘正东, 尤素萍. 准Λ型四能级原子系统中的烧孔和光学双稳现象. 物理学报, 2006, 55(12): 6410-6413. doi: 10.7498/aps.55.6410
    [20] 张明昕, 吴克琛, 刘彩萍, 韦永勤. 密度泛函交换关联势与过渡金属化合物光学非线性的计算研究. 物理学报, 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
计量
  • 文章访问数:  2300
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-20
  • 修回日期:  2023-10-25
  • 上网日期:  2023-12-08
  • 刊出日期:  2024-03-05

/

返回文章
返回