-
光学双稳态这一非线性光学现象因其在全光系统中的巨大应用潜力而备受关注. 然而微弱的非线性响应往往需要巨大的输入功率才能实现光学双稳态, 导致其实用性不强. 本文基于Ga2O3-SiC-Ag的金属-介电材料多层结构, 在实现介电常数近零的大场增强的同时, 还引入了具有大非线性系数的材料, 并基于有限元法研究了介电常数近零层的厚度和长度对光学双稳态的影响. 研究结果表明, 光学双稳态随介电常数近零层的厚度和长度的增大而变得愈发显著, 在通信波段的开关阈值低至约 10–6 W/cm2, 与之前报道的基于介电常数近零材料的光学双稳态相比, 降低了9个数量级, 展现了在光子集成电路产业化中的巨大应用潜力.
-
关键词:
- 光学双稳态 /
- Ga2O3-SiC-Ag /
- 介电常数近零材料 /
- 非线性光学
Optical bistability has attracted much attention due to its enormous potential applications in all-optical operation and signal processing. However, the weak nonlinear responses typically require huge pump power to reach the threshold of the optical bistability, thus hindering the real applications. In this study, we propose an efficient optical bistable metamaterial, which is composed of multilayer Ga2O3-SiC-Ag metal-dielectric nanostructures. We not only use the epsilon-near-zero (ENZ) with SiC-Ag thin layers to enhance the substantial field, but also incorporate the SiC material to increase its significant optical nonlinear coefficient. In the structural design, the introduction of Ga2O3 layer facilitates the light field concentration, contributing to the further reduction in threshold power for optical bistability, and also conducing to the improvement of the physical and chemical stability of the device. The influences of the thickness and length of the ENZ layer on the optical bistability are systematically investigated by using the finite element method. The results demonstrate that optical bistability becomes more pronounced with the increase of the thickness and length of ENZ layer, exhibiting a bistability switching threshold as low as ~10–6 W/cm2 in the telecommunication band. Comparing with the previously reported optical bistability based on ENZ mechanism, the threshold shows a significant reduction by 9 orders of magnitude, demonstrating great application potential in the fields of semiconductor devices and photonic integrated circuits.-
Keywords:
- optical bistability /
- Ga2O3-SiC-Ag /
- epsilon-near-zero materials /
- nonlinear optics
[1] 董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙 2016 物理学报 65 114207Google Scholar
1] Dong L J, Xue C H, Sun Y, Deng F S, Shi Y L 2016 Acta Phys. Sin. 65 114207Google Scholar
[2] 张强, 周胜, 励强华, 王选章, 付淑芳 2012 物理学报 61 157501Google Scholar
Zhang Q, Zhou S, Li Q H, Wang X Z, Fu S F 2012 Acta Phys. Sin. 61 157501Google Scholar
[3] Bassani F, Liedl G L, Wyder P 2005 Encyclopedia of Condensed Matter Physics (Oxford: Elsevier) pp147–152
[4] Keshtkar P, Miri M, Yasrebi N 2021 Appl. Opt. 60 7234Google Scholar
[5] Hu X Y, Jiang P, Ding C Y, Yang H, Gong Q H 2008 Nat. Photonics 2 185Google Scholar
[6] Liu C W, Liu Y, Du L, Su W J, Wu H, Li Y 2023 Opt. Express 31 9236Google Scholar
[7] Li Y N, Chen Y Y, Wan R G, Yan H W 2019 Phys. Lett. A 383 2248Google Scholar
[8] Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M 2012 Nat. Photonics 6 248Google Scholar
[9] Carmichael H J 1993 Phys. Rev. Lett. 70 2273Google Scholar
[10] Gibbs H M, McCall S L, Gossard A C, Passner A, Wiegmann W, Venkatesan T N C 1979 Laser Spectroscopy IV (Berlin: Heidelberg) pp441–450
[11] Koenderink A F, Alù A, Polman A 2015 Science 348 516Google Scholar
[12] Powell K, Wang J, Shams-Ansari A, Liao B K, Meng D B, Sinclair N, Li L W, Deng J D, Lončar M, Yi X K 2022 Opt. Express 30 34149Google Scholar
[13] Peng Y X, Xu J, Dong H, Dai X Y, Jiang J, Qian S Y, Jiang L Y 2020 Opt. Express 28 34948Google Scholar
[14] Atorf B, Muehlenbernd H, Zentgraf T, Kitzerow H 2020 Opt. Express 28 8898Google Scholar
[15] Vassant S, Hugonin J-P, Marquier F, Greffet J-J 2012 Opt. Express 20 23971Google Scholar
[16] Hendrickson J R, Vangala S, Dass C, Gibson R, Goldsmith J, Leedy K, Walker Jr D E, Cleary J W, Kim W, Guo J 2018 ACS Photonics 5 776Google Scholar
[17] 郭绮琪, 陈溢杭 2021 物理学报 70 187303Google Scholar
Guo Q Q, Chen Y H 2021 Acta Phys. Sin. 70 187303Google Scholar
[18] Campione S, Brener I, Marquier F 2015 Phys. Rev. B 91 121408Google Scholar
[19] Vassant S, Archambault A, Marquier F, Pardo F, Gennser U, Cavanna A, Pelouard J L, Greffet J J 2012 Phys. Rev. Lett. 109 237401Google Scholar
[20] Kim M, Kim S, Kim S 2019 Sci. Rep. 9 6552Google Scholar
[21] Wang R, Hu F, Meng Y T, Gong M, Liu Q L 2023 Opt. Lett. 48 1371Google Scholar
[22] Xu J, Peng Y X, Jiang J, Qian S Y, Jiang L Y 2023 Opt. Lett. 48 3235Google Scholar
[23] Ding F, Yang Y, Deshpande R A, Bozhevolnyi S I 2018 Nanophotonics 7 1129Google Scholar
[24] Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar
[25] Chen L, Shakya J, Lipson M 2006 Opt. Lett. 31 2133Google Scholar
[26] Sanchis P, Blasco J, Martínez A, Martí J 2007 J. Lightwave Technol. 25 1298Google Scholar
[27] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar
[28] Ji X Q, Liu M Y, Yan Z Y, Li S, Liu Z, Qi X H, Yuan J Y, Wang J J, Zhao Y C, Tang W H 2023 IEEE Trans. Electron Devices 70 4236Google Scholar
[29] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平 2023 物理学报 72 097302Google Scholar
Dong D M, Wang C, Zhang Q Y, Zhang T, Yang Y T, Xia H C, Wang Y H, Wu Z P 2023 Acta Phys. Sin. 72 097302Google Scholar
[30] Wang J J, Ji X Q, Yan Z Y, Yan X, Lu C, Li Z T, Qi S, Li S, Qi X H, Zhang S R 2023 Mater. Sci. Semicond. Process. 159 107372Google Scholar
[31] Ji X Q, Lu C, Yan Z Y, Shan L, Yan X, Wang J J, Yue J Y, Qi X H, Liu Z, Tang W H, Li P G 2022 J. Phys. D: Appl. Phys. 55 443002
[32] Guo B, Zhang Z S, Huo Y Y, Wang S Y, Ning T Y 2023 Chin. Opt. Lett. 21 013602Google Scholar
[33] De Leonardis F, Soref R A, Passaro V M N 2017 Sci. Rep. 7 40924Google Scholar
[34] Borshch A, Brodyn M, Volkov V I, Rudenko V I, Lyakhovetskii V, Semenov V, Puzikov V 2008 JETP Lett. 88 386Google Scholar
[35] Brodyn M, Volkov V, Lyakhovetskii V, Rudenko V, Puzilkov V, Semenov A 2012 J. Exp. Theor. Phys. 114 205Google Scholar
[36] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar
[37] Larruquert J I, PérezMarín A P, García Cortés S, Rodríguez de Marcos L, Aznárez J A, Méndez J A 2011 JOSA A 28 2340Google Scholar
[38] Silvester P P, Ferrari R L 1996 Finite Elements for Electrical Engineers (Cambridge University Press
[39] Jin J M 2015 The Finite Element Method in Electromagnetics (John Wiley & Sons
[40] Lu J, Thiel D V 2000 IEEE Trans. Magn. 36 1000Google Scholar
[41] Selleri S 2003 IEEE Antennas Propag. Mag. 45 86Google Scholar
[42] Bhaumik I, Bhatt R, Ganesamoorthy S, Saxena A, Karnal A, Gupta P, Sinha A, Deb S 2011 Appl. Opt. 50 6006Google Scholar
[43] Pearton S, Yang J, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar
[44] Gosciniak J, Hu Z, Thomaschewski M, Sorger V J, Khurgin J B 2023 Laser Photonics Rev. 17 2200723Google Scholar
-
图 3 电场在器件中的空间分布 (a) 普通模式(1550 nm); (b) ENZ模式(1350 nm). Y方向电场振幅分布 (c) 普通模式(1550 nm); (d) ENZ模式(1350 nm)
Fig. 3. The spatial distribution of the electric field in the device: (a) Normal mode (1550 nm); (b) ENZ mode (1350 nm). The amplitude distribution of the electric field in the Y direction: (c) Normal mode (1550 nm); (d) ENZ mode (1350 nm).
图 5 电场在器件中的空间分布 (a) 普通模式(1700 nm); (b) ENZ模式 (1400 nm). Y方向电场振幅分布 (c) 普通模式(1700 nm); (d) ENZ模式(1400 nm)
Fig. 5. The spatial distribution of the electric field in the device: (a) Normal mode (1700 nm); (b) ENZ mode (1400 nm). The amplitude distribution of the electric field in the Y direction: (c) Normal mode (1700 nm); (d) ENZ mode (1400 nm).
-
[1] 董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙 2016 物理学报 65 114207Google Scholar
1] Dong L J, Xue C H, Sun Y, Deng F S, Shi Y L 2016 Acta Phys. Sin. 65 114207Google Scholar
[2] 张强, 周胜, 励强华, 王选章, 付淑芳 2012 物理学报 61 157501Google Scholar
Zhang Q, Zhou S, Li Q H, Wang X Z, Fu S F 2012 Acta Phys. Sin. 61 157501Google Scholar
[3] Bassani F, Liedl G L, Wyder P 2005 Encyclopedia of Condensed Matter Physics (Oxford: Elsevier) pp147–152
[4] Keshtkar P, Miri M, Yasrebi N 2021 Appl. Opt. 60 7234Google Scholar
[5] Hu X Y, Jiang P, Ding C Y, Yang H, Gong Q H 2008 Nat. Photonics 2 185Google Scholar
[6] Liu C W, Liu Y, Du L, Su W J, Wu H, Li Y 2023 Opt. Express 31 9236Google Scholar
[7] Li Y N, Chen Y Y, Wan R G, Yan H W 2019 Phys. Lett. A 383 2248Google Scholar
[8] Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M 2012 Nat. Photonics 6 248Google Scholar
[9] Carmichael H J 1993 Phys. Rev. Lett. 70 2273Google Scholar
[10] Gibbs H M, McCall S L, Gossard A C, Passner A, Wiegmann W, Venkatesan T N C 1979 Laser Spectroscopy IV (Berlin: Heidelberg) pp441–450
[11] Koenderink A F, Alù A, Polman A 2015 Science 348 516Google Scholar
[12] Powell K, Wang J, Shams-Ansari A, Liao B K, Meng D B, Sinclair N, Li L W, Deng J D, Lončar M, Yi X K 2022 Opt. Express 30 34149Google Scholar
[13] Peng Y X, Xu J, Dong H, Dai X Y, Jiang J, Qian S Y, Jiang L Y 2020 Opt. Express 28 34948Google Scholar
[14] Atorf B, Muehlenbernd H, Zentgraf T, Kitzerow H 2020 Opt. Express 28 8898Google Scholar
[15] Vassant S, Hugonin J-P, Marquier F, Greffet J-J 2012 Opt. Express 20 23971Google Scholar
[16] Hendrickson J R, Vangala S, Dass C, Gibson R, Goldsmith J, Leedy K, Walker Jr D E, Cleary J W, Kim W, Guo J 2018 ACS Photonics 5 776Google Scholar
[17] 郭绮琪, 陈溢杭 2021 物理学报 70 187303Google Scholar
Guo Q Q, Chen Y H 2021 Acta Phys. Sin. 70 187303Google Scholar
[18] Campione S, Brener I, Marquier F 2015 Phys. Rev. B 91 121408Google Scholar
[19] Vassant S, Archambault A, Marquier F, Pardo F, Gennser U, Cavanna A, Pelouard J L, Greffet J J 2012 Phys. Rev. Lett. 109 237401Google Scholar
[20] Kim M, Kim S, Kim S 2019 Sci. Rep. 9 6552Google Scholar
[21] Wang R, Hu F, Meng Y T, Gong M, Liu Q L 2023 Opt. Lett. 48 1371Google Scholar
[22] Xu J, Peng Y X, Jiang J, Qian S Y, Jiang L Y 2023 Opt. Lett. 48 3235Google Scholar
[23] Ding F, Yang Y, Deshpande R A, Bozhevolnyi S I 2018 Nanophotonics 7 1129Google Scholar
[24] Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar
[25] Chen L, Shakya J, Lipson M 2006 Opt. Lett. 31 2133Google Scholar
[26] Sanchis P, Blasco J, Martínez A, Martí J 2007 J. Lightwave Technol. 25 1298Google Scholar
[27] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar
[28] Ji X Q, Liu M Y, Yan Z Y, Li S, Liu Z, Qi X H, Yuan J Y, Wang J J, Zhao Y C, Tang W H 2023 IEEE Trans. Electron Devices 70 4236Google Scholar
[29] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平 2023 物理学报 72 097302Google Scholar
Dong D M, Wang C, Zhang Q Y, Zhang T, Yang Y T, Xia H C, Wang Y H, Wu Z P 2023 Acta Phys. Sin. 72 097302Google Scholar
[30] Wang J J, Ji X Q, Yan Z Y, Yan X, Lu C, Li Z T, Qi S, Li S, Qi X H, Zhang S R 2023 Mater. Sci. Semicond. Process. 159 107372Google Scholar
[31] Ji X Q, Lu C, Yan Z Y, Shan L, Yan X, Wang J J, Yue J Y, Qi X H, Liu Z, Tang W H, Li P G 2022 J. Phys. D: Appl. Phys. 55 443002
[32] Guo B, Zhang Z S, Huo Y Y, Wang S Y, Ning T Y 2023 Chin. Opt. Lett. 21 013602Google Scholar
[33] De Leonardis F, Soref R A, Passaro V M N 2017 Sci. Rep. 7 40924Google Scholar
[34] Borshch A, Brodyn M, Volkov V I, Rudenko V I, Lyakhovetskii V, Semenov V, Puzikov V 2008 JETP Lett. 88 386Google Scholar
[35] Brodyn M, Volkov V, Lyakhovetskii V, Rudenko V, Puzilkov V, Semenov A 2012 J. Exp. Theor. Phys. 114 205Google Scholar
[36] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar
[37] Larruquert J I, PérezMarín A P, García Cortés S, Rodríguez de Marcos L, Aznárez J A, Méndez J A 2011 JOSA A 28 2340Google Scholar
[38] Silvester P P, Ferrari R L 1996 Finite Elements for Electrical Engineers (Cambridge University Press
[39] Jin J M 2015 The Finite Element Method in Electromagnetics (John Wiley & Sons
[40] Lu J, Thiel D V 2000 IEEE Trans. Magn. 36 1000Google Scholar
[41] Selleri S 2003 IEEE Antennas Propag. Mag. 45 86Google Scholar
[42] Bhaumik I, Bhatt R, Ganesamoorthy S, Saxena A, Karnal A, Gupta P, Sinha A, Deb S 2011 Appl. Opt. 50 6006Google Scholar
[43] Pearton S, Yang J, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar
[44] Gosciniak J, Hu Z, Thomaschewski M, Sorger V J, Khurgin J B 2023 Laser Photonics Rev. 17 2200723Google Scholar
计量
- 文章访问数: 2088
- PDF下载量: 47
- 被引次数: 0