搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑层结构中的光学双稳态及其在光神经网络中的应用

李昀衡 喻可 朱天宇 于桐 单思超 谷亚舟 李志曈

引用本文:
Citation:

拓扑层结构中的光学双稳态及其在光神经网络中的应用

李昀衡, 喻可, 朱天宇, 于桐, 单思超, 谷亚舟, 李志曈

Optical bistability in topological layered structure and its application in photonic neural network

Li Yun-Heng, Yu Ke, Zhu Tian-Yu, Yu Tong, Shan Si-Chao, Gu Ya-Zhou, Li Zhi-Tong
PDF
HTML
导出引用
  • 具有光学双稳态的非线性微纳光学器件在光集成电路和光神经网络中有着重要的应用. 然而, 传统光学双稳态特性会受到内部系统无序和外部系统扰动的影响, 不利于应用. 本文利用SiO2和TiO2的拓扑多层薄膜结构, 在拓扑模式电场强度最大的区域引入非线性介电常数, 探究拓扑模式的光学双稳态特性, 并分析了双稳态特性在层厚度变化和折射率变化下的鲁棒性. 最后, 本文将双稳态特性作为非线性激活函数应用到了光神经网络计算中, 相比于传统的非线性激活函数ReLu和Sigmoid, 双稳态非线性激活函数展示出了更好的图像识别精度. 本文结果对研发下一代鲁棒性强的光神经网络有着重要研究意义.
    Optical bistable state exhibits its great potential applications in photonic integrated circuit and photonic neural network. However, the traditional optical bistable state will be influenced by the system disorders, which are not suitable for application. In this work, we investigate the topological bistable states in a layered structure with center inversion symmetry consisting of alternating layers of high index material TiO2 and low index material SiO2. In the topological mode, the electric field is highly localized in the inversion center of the layered structure (also known as the interface) and exponentially decays into the bulk. Thus, when the nonlinear permittivity is strategically introduced into those layers, nonlinear phenomena such as the bistable state appears. The finite element numerical simulations reveal that the optimal bistable state appears when the layer period is 5 with a threshold power around 1.2 W/m. Benefiting from the topological characteristics, such a bistable state persists when random perturbations are introduced into the layer thickness and refractive index. Finally, we apply the bistable states to a photonic neural network. The bistable function shows prediction accuracy similar to the classic activation function ReLu and sigmoid in various learning tasks. These results provide a novel method for inserting highly robust optical bistable states from topological layered structure into photonic neural network.
      通信作者: 李志曈, zhitong.li@bupt.edu.cn
    • 基金项目: 信息光子学与光通信国家重点实验室自由探索性研究课题(批准号: IPOC2023ZT03)和中央高校基本科研业务费专项基金(批准号: 2022RC28)资助的课题.
      Corresponding author: Li Zhi-Tong, zhitong.li@bupt.edu.cn
    • Funds: Project supported by the Opening Foundation of the State Key Laboratory of Information Photonics and the Optical Communication, China (Grant No. IPOC2023ZT03) and the Fundamental Research Funds for the Central Universities (Grant No. 2022RC28).
    [1]

    Chen X 1984 Chin. J. Nat. 10 761 [陈洗 1984 自然杂志 10 761]

    Chen X 1984 Chin. J. Nat. 10 761

    [2]

    Notomi M, Shinya A, Mitsugi S, Kira G, Kuramochi E, Tanabe T 2005 Opt. Express 13 2678Google Scholar

    [3]

    Trofimov V A, Egorenkov V A, Loginova M M 2016 Active Photonic Materials VIII, San Diego, California, United States, Suptember 16, 2016 p992029

    [4]

    Ozawa T, Price H M, Amo A, et al. 2019 Rev. Mod. Phys. 91 015006Google Scholar

    [5]

    Moore J E 2010 Nature 464 194Google Scholar

    [6]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [7]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [8]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [9]

    Li Z, Luo X W, Gu Q 2023 APL Photonics 8 070901Google Scholar

    [10]

    Li Z, Gu Q 2024 Nanophotonics 13 825Google Scholar

    [11]

    Li Z T, Luo X W, Lin D Y, Gharajeh A, Moon J, Hou J P, Zhang C W, Gu Q 2023 Phys. Rev. Lett. 131 023202Google Scholar

    [12]

    Li C, Hu X Y, Yang H, Gong Q H 2017 AIP Adv. 7 025203Google Scholar

    [13]

    Poshakinskiy A V, Poddubny A N, Pilozzi L, Ivchenko E L 2014 Phys. Rev. Lett. 112 107403Google Scholar

    [14]

    Ishida N, Ota Y, Lin W, Byrnes T, Arakawa Y, Iwamoto S 2022 Nanophotonics 11 2169Google Scholar

    [15]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photonics 8 821Google Scholar

    [16]

    Lu L, Fang C, Fu L, Johnson S G, Joannopoulos J D, Soljačić M 2016 Nat. Phys. 12 337Google Scholar

    [17]

    Verbin M, Zilberberg O, Kraus Y E, Lahini Y, Silberberg Y 2013 Phys. Rev. Lett. 110 076403Google Scholar

    [18]

    Gao W L, Lawrence M, Yang B, Liu F, Fang F Z, Béri B, Li J S, Zhang S 2015 Phys. Rev. Lett. 114 037402Google Scholar

    [19]

    Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M 2013 Nat. Photonics 7 1001Google Scholar

    [20]

    Long X, Bao Y W, Yuan H X, Zhang H Y, Dai X Y, Li Z F, Jiang L Y, Xiang Y J 2022 Opt. Express 30 20847Google Scholar

    [21]

    Psaltis D, Brady D, Wagner K 1988 Appl. Opt. 27 1752Google Scholar

    [22]

    Li Z T, Shan S C, Hu S R, Gu Y Z, Ji X Q, Hou J P 2024 Opt. Mater. Express 14 1398Google Scholar

    [23]

    Tian J, Tan Q Y, Wang Y, Yang Y, Yuan G, Adamo G, Soci C 2023 Nat. Commun. 14 1433Google Scholar

    [24]

    Blanco-Redondo A, Andonegui I, Collins M J, et al. 2016 Phys. Rev. Lett. 116 163901Google Scholar

    [25]

    Weimann S, Kremer M, Plotnik Y, et al. 2017 Nat. Mater. 16 433Google Scholar

    [26]

    Huang Z, Baron A, Larouche S, Argyropoulos C, Smith D R 2015 Opt. Lett. 40 5638Google Scholar

    [27]

    Miscuglio M, Mehrabian A, Hu Z, et al. 2018 Opt. Mater. Express 8 3851Google Scholar

    [28]

    Gosciniak J 2024 IEEE Photonics J. 16 1Google Scholar

    [29]

    Jha A, Huang C, Prucnal P R 2020 Opt. Lett. 45 4819Google Scholar

  • 图 1  (a)拓扑层结构三维示意图; (b)未加入非线性材料的三维混合结构纵切面图; (c)加入非线性材料后的切面图, 非线性材料加入到了A、B两层中; (d)周期数T = 5时, 拓扑中心对称结构的透射率-波长谱线; (e) 周期数T = 5时, 镜面对称结构的透射率-波长谱线

    Fig. 1.  (a) Three dimensional schematic of topological layered structure; (b) cross section view of the topological layered structure; (c) cross section view of the topological layered structure when the nonlinear permittivity is introduced in layer A and B; (d) transmission spectrum of topological layered structure when T = 5; (e) transmission spectrm of mirror-symmetrci layered structure when T = 5.

    图 2  (a) T = 4拓扑层结构透射率-波长谱线; (b) T = 4层结构拓扑模式电场分布; (c) T = 5拓扑层结构透射率-波长谱线; (d) T = 5层结构拓扑模式电场分布

    Fig. 2.  (a) Transmission spectrum of the topological mode at T = 4; (b) electric field mode distribution of the topological mode at T = 4; (c) transmission spectrum at T = 5 of the topological mode; (d) electric field mode distribution of the topological mode at T = 5.

    图 3  (a) T = 5时, 拓扑层结构在不同入射光强下透射谱; (b) 515 nm工作波长下光滞回线

    Fig. 3.  (a) Transmission spectra at different incident power densities; (b) photonic hysteresis loop at the operation wavelength of 515 nm.

    图 4  在层厚度添加10%随机扰动获得的结果 (a) 拓扑透射谱; (b) 共振峰处的电场模分布; (c) 双稳态曲线

    Fig. 4.  Results is obtained by adding 10% random perturbation to each layers: (a) Transmission spectrum; (b) topological mode field distribution; (c) photonic hysteresis loop.

    图 5  在材料折射率中添加10%随机扰动获得的结果 (a) 拓扑透射谱; (b) 共振峰处的电场模分布; (c) 双稳态曲线

    Fig. 5.  Results is obtained by adding 10% random perturbation to the refractive index of the material: (a) Transmission spectrum; (b) topological mode field distribution; (c) photonic hysteresis loop.

    图 6  (a) 全连接深度神经网络结构示意图, 其中包括二维图像的输入层, 两个节点数为400和200的隐藏层以及输出层, 这些隐藏层分别使用4种不同的激活函数: 无激活函数、Relu、Sigmoid和双稳态曲线. (b)—(d) 4种激活函数在不同数据集上的表现 (b) CIFAR-10; (c) MNIST; (d) FashionMNIST

    Fig. 6.  (a) Schematic of a fully connected deep neural network architecture, which includes an input layer for a 2D image, two hidden layers with 400 and 200 nodes, and an output layer, these hidden layers use four different activation functions: no activation function, Relu, Sigmoid, and bistable curve. (b)–(d) Performance of four activation functions on different datasets: (b) CIFAR-10; (c) MNIST; (d) FashionMNIST.

  • [1]

    Chen X 1984 Chin. J. Nat. 10 761 [陈洗 1984 自然杂志 10 761]

    Chen X 1984 Chin. J. Nat. 10 761

    [2]

    Notomi M, Shinya A, Mitsugi S, Kira G, Kuramochi E, Tanabe T 2005 Opt. Express 13 2678Google Scholar

    [3]

    Trofimov V A, Egorenkov V A, Loginova M M 2016 Active Photonic Materials VIII, San Diego, California, United States, Suptember 16, 2016 p992029

    [4]

    Ozawa T, Price H M, Amo A, et al. 2019 Rev. Mod. Phys. 91 015006Google Scholar

    [5]

    Moore J E 2010 Nature 464 194Google Scholar

    [6]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [7]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [8]

    Wang Z, Chong Y, Joannopoulos J D, Soljačić M 2009 Nature 461 772Google Scholar

    [9]

    Li Z, Luo X W, Gu Q 2023 APL Photonics 8 070901Google Scholar

    [10]

    Li Z, Gu Q 2024 Nanophotonics 13 825Google Scholar

    [11]

    Li Z T, Luo X W, Lin D Y, Gharajeh A, Moon J, Hou J P, Zhang C W, Gu Q 2023 Phys. Rev. Lett. 131 023202Google Scholar

    [12]

    Li C, Hu X Y, Yang H, Gong Q H 2017 AIP Adv. 7 025203Google Scholar

    [13]

    Poshakinskiy A V, Poddubny A N, Pilozzi L, Ivchenko E L 2014 Phys. Rev. Lett. 112 107403Google Scholar

    [14]

    Ishida N, Ota Y, Lin W, Byrnes T, Arakawa Y, Iwamoto S 2022 Nanophotonics 11 2169Google Scholar

    [15]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nat. Photonics 8 821Google Scholar

    [16]

    Lu L, Fang C, Fu L, Johnson S G, Joannopoulos J D, Soljačić M 2016 Nat. Phys. 12 337Google Scholar

    [17]

    Verbin M, Zilberberg O, Kraus Y E, Lahini Y, Silberberg Y 2013 Phys. Rev. Lett. 110 076403Google Scholar

    [18]

    Gao W L, Lawrence M, Yang B, Liu F, Fang F Z, Béri B, Li J S, Zhang S 2015 Phys. Rev. Lett. 114 037402Google Scholar

    [19]

    Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M 2013 Nat. Photonics 7 1001Google Scholar

    [20]

    Long X, Bao Y W, Yuan H X, Zhang H Y, Dai X Y, Li Z F, Jiang L Y, Xiang Y J 2022 Opt. Express 30 20847Google Scholar

    [21]

    Psaltis D, Brady D, Wagner K 1988 Appl. Opt. 27 1752Google Scholar

    [22]

    Li Z T, Shan S C, Hu S R, Gu Y Z, Ji X Q, Hou J P 2024 Opt. Mater. Express 14 1398Google Scholar

    [23]

    Tian J, Tan Q Y, Wang Y, Yang Y, Yuan G, Adamo G, Soci C 2023 Nat. Commun. 14 1433Google Scholar

    [24]

    Blanco-Redondo A, Andonegui I, Collins M J, et al. 2016 Phys. Rev. Lett. 116 163901Google Scholar

    [25]

    Weimann S, Kremer M, Plotnik Y, et al. 2017 Nat. Mater. 16 433Google Scholar

    [26]

    Huang Z, Baron A, Larouche S, Argyropoulos C, Smith D R 2015 Opt. Lett. 40 5638Google Scholar

    [27]

    Miscuglio M, Mehrabian A, Hu Z, et al. 2018 Opt. Mater. Express 8 3851Google Scholar

    [28]

    Gosciniak J 2024 IEEE Photonics J. 16 1Google Scholar

    [29]

    Jha A, Huang C, Prucnal P R 2020 Opt. Lett. 45 4819Google Scholar

  • [1] 王建伟, 赵乃萱, 望楚佩, 向玲慧, 温廷新. 相互依赖网络上级联故障鲁棒性悖论研究. 物理学报, 2024, 73(21): 218901. doi: 10.7498/aps.73.20241002
    [2] 胡生润, 季学强, 王进进, 阎结昀, 张天悦, 李培刚. 基于Ga2O3-SiC-Ag多层结构的介电常数近零超低开关阈值光学双稳态器件. 物理学报, 2024, 73(5): 054201. doi: 10.7498/aps.73.20231534
    [3] 杨武华, 王彩琳, 张如亮, 张超, 苏乐. 高压IGBT雪崩鲁棒性的研究. 物理学报, 2023, 72(7): 078501. doi: 10.7498/aps.72.20222248
    [4] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性. 物理学报, 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [5] 陈华俊. 基于石墨烯光力系统的非线性光学效应及非线性光学质量传感. 物理学报, 2020, 69(13): 134203. doi: 10.7498/aps.69.20191745
    [6] 薛晓丹, 王美丽, 邵雨竹, 王俊松. 基于抑制性突触可塑性的神经元放电率自稳态机制. 物理学报, 2019, 68(7): 078701. doi: 10.7498/aps.68.20182234
    [7] 董丽娟, 薛春华, 孙勇, 邓富胜, 石云龙. 单负材料异质结构中损耗诱导的场局域增强和光学双稳态. 物理学报, 2016, 65(11): 114207. doi: 10.7498/aps.65.114207
    [8] 侯绿林, 老松杨, 肖延东, 白亮. 复杂网络可控性研究现状综述. 物理学报, 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [9] 刘祥磊, 潘泽, 王雅丽, 史祎诗. 基于叠层衍射的数字水印算法研究. 物理学报, 2015, 64(23): 234201. doi: 10.7498/aps.64.234201
    [10] 陈世明, 吕辉, 徐青刚, 许云飞, 赖强. 基于度的正/负相关相依网络模型及其鲁棒性研究. 物理学报, 2015, 64(4): 048902. doi: 10.7498/aps.64.048902
    [11] 陈世明, 邹小群, 吕辉, 徐青刚. 面向级联失效的相依网络鲁棒性研究. 物理学报, 2014, 63(2): 028902. doi: 10.7498/aps.63.028902
    [12] 缪志强, 王耀南. 基于径向小波神经网络的混沌系统鲁棒自适应反演控制. 物理学报, 2012, 61(3): 030503. doi: 10.7498/aps.61.030503
    [13] 赵龙. 鲁棒惯性地形辅助导航算法研究. 物理学报, 2012, 61(10): 104301. doi: 10.7498/aps.61.104301
    [14] 杨金金, 李慧军, 文文, 黄国翔. n型主动拉曼增益原子介质中的光学双稳态. 物理学报, 2012, 61(22): 224204. doi: 10.7498/aps.61.224204
    [15] 温淑焕, 袁俊英. 基于无源性的不确定机器人的力控制. 物理学报, 2010, 59(3): 1615-1619. doi: 10.7498/aps.59.1615
    [16] 刘均海, 万勇, 韩文娟, 杨红卫, 张怀金, 王继扬, Petrov Valentin. 掺Yb钒酸盐晶体激光振荡中的光学双稳态现象研究. 物理学报, 2010, 59(1): 293-299. doi: 10.7498/aps.59.293
    [17] 曾高荣, 裘正定. 数字水印的鲁棒性评测模型. 物理学报, 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
    [18] 毛庆和, 冯素娟, 蒋 建, 朱宗玖, 刘文清. 基于FLM的L波段双波长EDFL的双稳态变换. 物理学报, 2007, 56(1): 296-300. doi: 10.7498/aps.56.296
    [19] 陈 峻, 刘正东, 尤素萍. 准Λ型四能级原子系统中的烧孔和光学双稳现象. 物理学报, 2006, 55(12): 6410-6413. doi: 10.7498/aps.55.6410
    [20] 刘福才, 王娟, 石淼, 高秀伟. 混沌系统的非线性连续预测变结构控制与同步. 物理学报, 2002, 51(12): 2707-2712. doi: 10.7498/aps.51.2707
计量
  • 文章访问数:  2055
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-25
  • 修回日期:  2024-07-07
  • 上网日期:  2024-07-10
  • 刊出日期:  2024-08-20

/

返回文章
返回