搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于抑制性突触可塑性的神经元放电率自稳态机制

薛晓丹 王美丽 邵雨竹 王俊松

引用本文:
Citation:

基于抑制性突触可塑性的神经元放电率自稳态机制

薛晓丹, 王美丽, 邵雨竹, 王俊松

Neural firing rate homeostasis via inhibitory synaptic plasticity

Xue Xiao-Dan, Wang Mei-Li, Shao Yu-Zhu, Wang Jun-Song
PDF
HTML
导出引用
  • 神经元放电率自稳态是指大脑神经网络的放电率维持在相对稳定的状态. 大量实验研究发现神经元放电率自稳态是神经电活动的重要特征, 并且放电率自稳态是实现神经信息处理及维持正常脑功能的基础, 因此放电率自稳态的研究是神经科学领域的重要科学问题. 脑神经网络是一个高度复杂的动态系统, 存在大量输入扰动信号及由于动态链接导致的参数摄动, 因此如何建立并维持神经元放电率自稳态及其鲁棒性仍有待深入研究. 反馈神经回路是皮层神经网络的典型连接模式, 抑制性突触可塑性对神经元放电率自稳态具有重要的调控作用. 本文通过构建包含抑制性突触可塑性的反馈神经回路模型对神经元放电率自稳态及其鲁棒性进行计算研究. 结果表明: 在抑制性突触可塑性的作用下, 神经元放电率可自适应地跟踪目标放电率, 从而取得放电率自稳态; 在有外部输入干扰和参数摄动的情况下, 神经元放电率具有良好的抗扰动性能, 表明放电率自稳态具有很强的鲁棒性; 理论分析揭示了抑制性突触可塑性学习规则是神经元放电率自稳态的神经机制; 仿真分析进一步揭示了学习率及目标放电率对放电率自稳态建立过程具有重要影响.
    Neural firing rate homeostasis, as an important feature of neural electrical activity, means that the firing rate in brain is maintained in a relatively stable state, and fluctuates around a constant value. Extensive experimental studies have revealed that the firing rate homeostasis is ubiquitous in brain, and provides a base for neural information processing and maintaining normal neurological functions, so that the research on neural firing rate homeostasis is a central problem in the field of neuroscience. Cortical neural network is a highly complex dynamic system with a large number of input disturbance signals and parameter perturbations due to dynamic connection. However, it remains to be further investigated how firing rate homeostasis is established in cortical neural network, furthermore, maintains robustness to these disturbances and perturbations. The feedback neural circuit with recurrent excitatory and inhibitory connection is a typical connective pattern in cortical cortex, and inhibitory synaptic plasticity plays a crucial role in achieving neural firing rate homeostasis. Here, by constructing a feedback neural network with inhibitory spike timing-dependent plasticity (STDP), we conduct a computational research to elucidate the mechanism of neural firing rate homeostasis. The results indicate that the neuronal firing rate can track the target firing rate accurately under the regulation of inhibitory synaptic plasticity, thus achieve firing rate homeostasis. In the face of external disturbances and parameter perturbations, the neuron firing rate deviates transiently from the target firing rate value, and converges to the target firing rate value at a steady state, which demonstrates that the firing rate homeostasis established by the inhibitory synaptic plasticity can maintain strong robustness. Furthermore, the analytical research qualitatively explains the firing rate homeostasis mechanism underlined by inhibitory synaptic plasticity. Finally, the simulations further demonstrate that the learning rate value and the firing rate set point value also exert a quantitative influence on the firing rate homeostasis. Overall, these findings not only gain an insight into the firing rate homeostasis mechanism underlined by inhibitory synaptic plasticity, but also inspire testable hypotheses for future experimental studies.
      通信作者: 王俊松, wjsong2004@126.com
    • 基金项目: 国家自然科学基金(批准号: 61473208, 61876132)和天津市应用基础与前沿技术研究计划项目(批准号: 15JCYBJC47700)资助的课题.
      Corresponding author: Wang Jun-Song, wjsong2004@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61473208, 61876132), and Tianjin Research Program of Application Foundation and Advanced Technology (Grant No. 15JCYBJC47700).
    [1]

    Gläser C, Joublin F 2011 IEEE T. Auton. Ment. De. 3 285Google Scholar

    [2]

    Hengen K B, Lambo M E, Hooser S D, van Katz D B, Turrigiano G G 2013 Neuron 80 335Google Scholar

    [3]

    Corner M A, Ramakers G J A 1992 Dev. Brain Res. 65 57Google Scholar

    [4]

    Ramakers G J A, Corner M A, Habets A M M C 1990 Exp. Brain Res. 79 157Google Scholar

    [5]

    Ramakers G J A, Galen H V, Feenstra M G P, Corner M A, Boer G J 1994 Int. J. Dev. Neurosci. 12 611Google Scholar

    [6]

    Pol A N V D, Obrietan K, Belousov A 1996 Neuroscience 74 653Google Scholar

    [7]

    Turrigiano G G, Leslie K R, Desai N S, Rutherford L C, Nelson S B 1998 Nature 391 892Google Scholar

    [8]

    Rutherford L C, Nelson S B, Turrigiano G G 1998 Neuron 21 521Google Scholar

    [9]

    Burrone J, O'Byrne M, Murthy V N 2002 Nature 420 414Google Scholar

    [10]

    Turrigiano G G, Nelson S B 2004 Nat. Rev. Neurosci. 5 97Google Scholar

    [11]

    Turrigiano G 2012 CSH Perspect. Biol. 4 a005736Google Scholar

    [12]

    Cannon J, Miller P 2016 J. Neurophysiol. 116 2004Google Scholar

    [13]

    Cannon J, Miller P 2017 J. Math. Neurosc. 7 1Google Scholar

    [14]

    Miller P, Cannon J 2018 Biol. Cybern. 113 47

    [15]

    McClelland J L, McNaughton B L, O'Reilly R C 1995 Psychol. Rev. 102 419Google Scholar

    [16]

    Frankland P W, O'Brien C, Ohno M, Kirkwood A, Silva A J 2001 Nature 411 309Google Scholar

    [17]

    Carcea I, Froemke R C 2013 Prog. Brain. Res. 207 65Google Scholar

    [18]

    Martin S J, Grimwood P D, Morris R G M 2000 Annu. Rev. Neurosci. 23 649Google Scholar

    [19]

    Sanderson J L, Dell'Acqua M L 2011 Neuroscientist 17 321Google Scholar

    [20]

    Yong L, Kauer J A 2010 Synapse 51 1Google Scholar

    [21]

    Haas J S, Thomas N, Abarbanel H D I 2006 J. Neurophysiol. 96 3305Google Scholar

    [22]

    D'Amour J A, Froemke R C 2015 Neuron 86 514Google Scholar

    [23]

    Hartmann K, Bruehl C, Golovko T, Draguhn A 2008 Plos One 3 e2979Google Scholar

    [24]

    Tohru K, Kazumasa Y, Yumiko Y, Crair M C, Yukio K 2008 Neuron 57 905Google Scholar

    [25]

    Stephen G, James R W 2001 Cereb. Cortex 11 37Google Scholar

    [26]

    Luz Y, Shamir M 2012 Plos. Comput. Biol. 8 e1002334Google Scholar

    [27]

    Hennequin G, Agnes E J, Vogels T P 2017 Annu. Revi. Neurosci. 40 557Google Scholar

    [28]

    Park H J, Friston K 2013 Science 342 1238411Google Scholar

    [29]

    Isaacson J S, Massimo S 2011 Neuronv 72 231Google Scholar

    [30]

    Maass W, Joshi P, Sontag E D 2007 Plos Comput. Biol. 3 e165Google Scholar

    [31]

    Jansen B H, Rit V G 1995 Biol. Cybern. 73 357Google Scholar

    [32]

    Chacron M J, André L, Leonard M 2005 Phys. Rev. E 72 051917Google Scholar

    [33]

    Froemke R C, Jones B J 2011 Neurosci. Biobehav. R. 35 2105Google Scholar

    [34]

    王俊松, 徐瑶 2014 物理学报 63 068701Google Scholar

    Wang J S, Xu Y 2014 Acta Phys. Sin. 63 068701Google Scholar

    [35]

    王美丽, 王俊松 2015 物理学报 64 108701Google Scholar

    Wang M L, Wang J S 2015 Acta Phys. Sin. 64 108701Google Scholar

    [36]

    Vogels T P, Abbott L F 2009 Nat. Neurosci. 12 483Google Scholar

    [37]

    Stepp N, Plenz D, Srinivasa N 2015 Plos Comput. Biol. 11 e1004043Google Scholar

    [38]

    Vogels T P, Sprekeler H, Zenke F, Clopath C, Gerstner W 2011 Science 334 1569Google Scholar

    [39]

    Maass W 2014 P. IEEE 102 860Google Scholar

    [40]

    Mcdonnell M D, Ward L M 2011 Nat. Rev. Neurosci. 12 183Google Scholar

    [41]

    Garrett D D, Mcintosh A R, Grady C L 2011 Nat. Rev. Neurosci. 12 612Google Scholar

    [42]

    Mcdonnell M D, Ward L M 2011 Nat. Rev. Neurosci. 12 415Google Scholar

    [43]

    Turrigiano G G 2008 Cell 135 422Google Scholar

    [44]

    Marder E, Tang L S 2010 Neuron 66 161Google Scholar

    [45]

    Sharon B, Dickman D K, Davis G W 2010 Neuron 66 220Google Scholar

  • 图 1  反馈神经回路模型结构

    Fig. 1.  Structure of the feedback neural network.

    图 2  抑制性突触可塑性(STDP)调节规则示意图

    Fig. 2.  The regulation rule of inhibitory synaptic plasticity (STDP).

    图 3  目标放电率为5 Hz时的神经元放电率自稳态分析图 (a)神经元膜电位; (b)神经元平均放电率曲线; (c)抑制性突触权重变化曲线

    Fig. 3.  Firing rate homeostasis with the target firing rate equal to 5 Hz: (a) Neural membrane potential; (b) the average firing rate; (c) the strength of inhibitory synapse.

    图 4  目标放电率为10 Hz时的神经元放电率自稳态分析图 (a)神经元膜电位; (b)神经元平均放电率曲线; (c)抑制性突触权重变化曲线

    Fig. 4.  Firing rate homeostasis with the target firing rate equal to 10 Hz: (a) Neuronal membrane potential; (b) the average firing rate; (c) the strength of inhibitory synapse.

    图 5  目标放电率为20 Hz时的神经元放电率自稳态分析图 (a)神经元膜电位; (b)神经元平均放电率曲线; (c)抑制性突触权重变化曲线

    Fig. 5.  Firing rate homeostasis with the target firing rate equal to 20 Hz: (a) Neuronal membrane potential; (b) the average firing rate; (c) the strength of inhibitory synapse.

    图 6  目标放电率为50 Hz时的神经元放电率自稳态分析图 (a)神经元膜电位; (b)神经元平均放电率曲线; (c)抑制性突触权重变化曲线

    Fig. 6.  Firing rate homeostasis with the target firing rate equal to 50 Hz: (a) Neuronal membrane potential; (b) the average firing rate; (c) the strength of inhibitory synapse.

    图 7  神经元实际放电率跟踪目标放电率的总体情况

    Fig. 7.  The simulation firing rate and target firing rate.

    图 8  噪声干扰下的神经元放电率鲁棒性 (a)噪声干扰信号; (b)神经元膜电位; (c)神经元平均放电率曲线; (d)抑制性突触权重变化曲线

    Fig. 8.  The robustness of neural firing rate homeostasis under noise disturbances: (a) The noise signal; (b) neuronal membrane potential; (c) the average firing rate; (d) the strength of inhibitory synapse.

    图 9  参数摄动下的放电率自稳态鲁棒性 (a)参数摄动信号; (b)神经元膜电位; (c)神经元平均放电率曲线; (d)抑制性突触权重变化曲线

    Fig. 9.  The robustness of neural firing rate homeostasis under parameter perturbation: (a) The parameter perturbation signal; (b) neuronal membrane potential; (c) the average firing rate; (d) the strength of inhibitory synapse.

    图 10  参数干扰时有无抑制性突触可塑性两种情况下的神经元平均放电率自稳态特性 (a)参数摄动信号; (b)神经元膜电位; (c)神经元平均放电率曲线; (d)抑制性突触权重变化曲线

    Fig. 10.  The firing rate characteristics with and without inhibitory synaptic plasticity under parameter perturbation: (a) The parameter perturbation signal; (b) neural membrane potential; (c) the average firing rate; (d) the strength of inhibitory synapse.

    图 11  学习率对放电率自稳态的影响 (a)参数摄动信号; (b)不同学习率时的神经元平均放电率曲线

    Fig. 11.  The effect of learning rate on neural firing rate homeostasis: (a) The parameter perturbation signal; (b) the firing rate with different learning rates.

    图 12  神经元实际放电率极限值

    Fig. 12.  The limitation value of neural firing rate.

    图 13  目标放电率的确定[43]

    Fig. 13.  Establishing a set point for the neuronal firing rate[43].

    表 1  神经网络结构相关参数取值

    Table 1.  Parameters values of the neural feedback model structure.

    参数描述取值
    NE兴奋性神经元规模800
    NI抑制性神经元规模200
    PEEE-E的连接概率0.2
    PEIE-I的连接概率0.4
    PIEI-E的连接概率0.4
    PIII-I的连接概率0.4
    下载: 导出CSV

    表 2  神经元模型各参数取值

    Table 2.  Parameters values of LIF neuron model.

    参数取值单位
    ${\tau _{\rm{m}}}$20ms
    ${V^{{\rm{rest}}}}$–60mV
    ${V_{{\rm{th}}}}$–50mV
    ${V^{\rm{E}}}$0mV
    ${V^{\rm{I}}}$–70mV
    ${g^{{\rm{leak}}}}$10nS
    下载: 导出CSV

    表 3  突触模型参数取值

    Table 3.  Parameters values of synapse model.

    参数取值单位
    ${\tau _{\rm{E}}}$5ms
    ${\tau _{\rm{I}}}$10ms
    ${\bar g^{\rm{E}}}$140pS
    ${\bar g^{\rm{I}}}\normalsize$350pS
    下载: 导出CSV

    表 4  抑制性突触可塑性的参数取值

    Table 4.  Parameters values of inhibitory synaptic plasticity.

    参数描述取值
    ${W_{ij}}^{}$抑制性突触权重0
    ${\tau _{{\rm{STDP}}}}$可塑性时间常数20
    $\eta $学习率0.005
    $\alpha $抑制因子0.12
    ${\rho _0}\normalsize$目标放电率
    下载: 导出CSV
  • [1]

    Gläser C, Joublin F 2011 IEEE T. Auton. Ment. De. 3 285Google Scholar

    [2]

    Hengen K B, Lambo M E, Hooser S D, van Katz D B, Turrigiano G G 2013 Neuron 80 335Google Scholar

    [3]

    Corner M A, Ramakers G J A 1992 Dev. Brain Res. 65 57Google Scholar

    [4]

    Ramakers G J A, Corner M A, Habets A M M C 1990 Exp. Brain Res. 79 157Google Scholar

    [5]

    Ramakers G J A, Galen H V, Feenstra M G P, Corner M A, Boer G J 1994 Int. J. Dev. Neurosci. 12 611Google Scholar

    [6]

    Pol A N V D, Obrietan K, Belousov A 1996 Neuroscience 74 653Google Scholar

    [7]

    Turrigiano G G, Leslie K R, Desai N S, Rutherford L C, Nelson S B 1998 Nature 391 892Google Scholar

    [8]

    Rutherford L C, Nelson S B, Turrigiano G G 1998 Neuron 21 521Google Scholar

    [9]

    Burrone J, O'Byrne M, Murthy V N 2002 Nature 420 414Google Scholar

    [10]

    Turrigiano G G, Nelson S B 2004 Nat. Rev. Neurosci. 5 97Google Scholar

    [11]

    Turrigiano G 2012 CSH Perspect. Biol. 4 a005736Google Scholar

    [12]

    Cannon J, Miller P 2016 J. Neurophysiol. 116 2004Google Scholar

    [13]

    Cannon J, Miller P 2017 J. Math. Neurosc. 7 1Google Scholar

    [14]

    Miller P, Cannon J 2018 Biol. Cybern. 113 47

    [15]

    McClelland J L, McNaughton B L, O'Reilly R C 1995 Psychol. Rev. 102 419Google Scholar

    [16]

    Frankland P W, O'Brien C, Ohno M, Kirkwood A, Silva A J 2001 Nature 411 309Google Scholar

    [17]

    Carcea I, Froemke R C 2013 Prog. Brain. Res. 207 65Google Scholar

    [18]

    Martin S J, Grimwood P D, Morris R G M 2000 Annu. Rev. Neurosci. 23 649Google Scholar

    [19]

    Sanderson J L, Dell'Acqua M L 2011 Neuroscientist 17 321Google Scholar

    [20]

    Yong L, Kauer J A 2010 Synapse 51 1Google Scholar

    [21]

    Haas J S, Thomas N, Abarbanel H D I 2006 J. Neurophysiol. 96 3305Google Scholar

    [22]

    D'Amour J A, Froemke R C 2015 Neuron 86 514Google Scholar

    [23]

    Hartmann K, Bruehl C, Golovko T, Draguhn A 2008 Plos One 3 e2979Google Scholar

    [24]

    Tohru K, Kazumasa Y, Yumiko Y, Crair M C, Yukio K 2008 Neuron 57 905Google Scholar

    [25]

    Stephen G, James R W 2001 Cereb. Cortex 11 37Google Scholar

    [26]

    Luz Y, Shamir M 2012 Plos. Comput. Biol. 8 e1002334Google Scholar

    [27]

    Hennequin G, Agnes E J, Vogels T P 2017 Annu. Revi. Neurosci. 40 557Google Scholar

    [28]

    Park H J, Friston K 2013 Science 342 1238411Google Scholar

    [29]

    Isaacson J S, Massimo S 2011 Neuronv 72 231Google Scholar

    [30]

    Maass W, Joshi P, Sontag E D 2007 Plos Comput. Biol. 3 e165Google Scholar

    [31]

    Jansen B H, Rit V G 1995 Biol. Cybern. 73 357Google Scholar

    [32]

    Chacron M J, André L, Leonard M 2005 Phys. Rev. E 72 051917Google Scholar

    [33]

    Froemke R C, Jones B J 2011 Neurosci. Biobehav. R. 35 2105Google Scholar

    [34]

    王俊松, 徐瑶 2014 物理学报 63 068701Google Scholar

    Wang J S, Xu Y 2014 Acta Phys. Sin. 63 068701Google Scholar

    [35]

    王美丽, 王俊松 2015 物理学报 64 108701Google Scholar

    Wang M L, Wang J S 2015 Acta Phys. Sin. 64 108701Google Scholar

    [36]

    Vogels T P, Abbott L F 2009 Nat. Neurosci. 12 483Google Scholar

    [37]

    Stepp N, Plenz D, Srinivasa N 2015 Plos Comput. Biol. 11 e1004043Google Scholar

    [38]

    Vogels T P, Sprekeler H, Zenke F, Clopath C, Gerstner W 2011 Science 334 1569Google Scholar

    [39]

    Maass W 2014 P. IEEE 102 860Google Scholar

    [40]

    Mcdonnell M D, Ward L M 2011 Nat. Rev. Neurosci. 12 183Google Scholar

    [41]

    Garrett D D, Mcintosh A R, Grady C L 2011 Nat. Rev. Neurosci. 12 612Google Scholar

    [42]

    Mcdonnell M D, Ward L M 2011 Nat. Rev. Neurosci. 12 415Google Scholar

    [43]

    Turrigiano G G 2008 Cell 135 422Google Scholar

    [44]

    Marder E, Tang L S 2010 Neuron 66 161Google Scholar

    [45]

    Sharon B, Dickman D K, Davis G W 2010 Neuron 66 220Google Scholar

  • [1] 李昀衡, 喻可, 朱天宇, 于桐, 单思超, 谷亚舟, 李志曈. 拓扑层结构中的光学双稳态及其在光神经网络中的应用. 物理学报, 2024, 73(16): 164208. doi: 10.7498/aps.73.20240569
    [2] 王建伟, 赵乃萱, 望楚佩, 向玲慧, 温廷新. 相互依赖网络上级联故障鲁棒性悖论研究. 物理学报, 2024, 73(21): 218901. doi: 10.7498/aps.73.20241002
    [3] 徐耀坤, 孙仕海, 曾瑶源, 杨俊刚, 盛卫东, 刘伟涛. 基于双光子干涉的量子全息理论框架. 物理学报, 2023, 72(21): 214207. doi: 10.7498/aps.72.20231242
    [4] 王玉坤, 李泽阳, 许康, 王子正. 制备-测量量子比特系统的自测试标准. 物理学报, 2023, 72(10): 100303. doi: 10.7498/aps.72.20222431
    [5] 杨武华, 王彩琳, 张如亮, 张超, 苏乐. 高压IGBT雪崩鲁棒性的研究. 物理学报, 2023, 72(7): 078501. doi: 10.7498/aps.72.20222248
    [6] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性. 物理学报, 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [7] 侯绿林, 老松杨, 肖延东, 白亮. 复杂网络可控性研究现状综述. 物理学报, 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [8] 陈世明, 吕辉, 徐青刚, 许云飞, 赖强. 基于度的正/负相关相依网络模型及其鲁棒性研究. 物理学报, 2015, 64(4): 048902. doi: 10.7498/aps.64.048902
    [9] 王美丽, 王俊松. 基于抑制性突触可塑性的反馈神经回路兴奋性与抑制性动态平衡. 物理学报, 2015, 64(10): 108701. doi: 10.7498/aps.64.108701
    [10] 段东立, 武小悦. 基于可调负载重分配的无标度网络连锁效应分析. 物理学报, 2014, 63(3): 030501. doi: 10.7498/aps.63.030501
    [11] 陈世明, 邹小群, 吕辉, 徐青刚. 面向级联失效的相依网络鲁棒性研究. 物理学报, 2014, 63(2): 028902. doi: 10.7498/aps.63.028902
    [12] 任卓明, 邵凤, 刘建国, 郭强, 汪秉宏. 基于度与集聚系数的网络节点重要性度量方法研究. 物理学报, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [13] 周武杰, 郁梅, 禹思敏, 蒋刚毅, 葛丁飞. 一种基于超混沌系统的立体图像零水印算法. 物理学报, 2012, 61(8): 080701. doi: 10.7498/aps.61.080701
    [14] 缪志强, 王耀南. 基于径向小波神经网络的混沌系统鲁棒自适应反演控制. 物理学报, 2012, 61(3): 030503. doi: 10.7498/aps.61.030503
    [15] 赵龙. 鲁棒惯性地形辅助导航算法研究. 物理学报, 2012, 61(10): 104301. doi: 10.7498/aps.61.104301
    [16] 王姣姣, 闫华, 魏平. 耦合动力系统的预测投影响应. 物理学报, 2010, 59(11): 7635-7643. doi: 10.7498/aps.59.7635
    [17] 温淑焕, 袁俊英. 基于无源性的不确定机器人的力控制. 物理学报, 2010, 59(3): 1615-1619. doi: 10.7498/aps.59.1615
    [18] 曾高荣, 裘正定. 数字水印的鲁棒性评测模型. 物理学报, 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
    [19] 邹露娟, 汪 波, 冯久超. 一种基于混沌和分数阶傅里叶变换的数字水印算法. 物理学报, 2008, 57(5): 2750-2754. doi: 10.7498/aps.57.2750
    [20] 龚礼华. 基于自适应脉冲微扰实现混沌控制的研究. 物理学报, 2005, 54(8): 3502-3507. doi: 10.7498/aps.54.3502
计量
  • 文章访问数:  11279
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-20
  • 修回日期:  2019-01-28
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回