-
针对相依网络耦合强度、子网络边以及耦合边对网络鲁棒性影响的问题,基于三种典型网络模型,建立对称相依网络和不对称相依网络模型. 针对六种不同的相依网络模型,计算其网络临界成本,比较耦合边权值和子网络边权值对相依网络成本的贡献程度,发现耦合边对网络的贡献更大. 采用仿真和理论证明的方法,获得使网络具有最小网络成本时的子网络负载参数α值和耦合强度参数β值,并证明了网络成本变化趋势与该参数对有关. 以网络成本作为鲁棒性测度的变量,通过对六种相依网络模型进行级联失效仿真,给出了网络具有最强鲁棒性时参数对的取值,以及网络鲁棒性与耦合强度之间的关系,发现网络鲁棒性并不是随着耦合强度单调地增加或减少.In order to study the influences of network coupling strength, subnetwork edge, and coupling edge of interdependent networks on the network robustness, symmetrically and asymmetrically coupled interdependent network models are constructed based on three typical network models. Firstly, we calculate the cost thresholds of six different interdependent networks, and find that the coupling edges have a greater influence on the cost of interdependent network than the edges of sub-networks. Furthermore, the relationship of the two parameters (α, β) with the cost of network is obtained by simulation and theoretical analysis, and the cost of network correlated with the two parameters is proved. Finally, by setting the cost of network as a variable measuring the robustness, the simulations on interdependent networks for suppressing cascading failure provide the values of the parameters corresponding to the strongest robustness and the relationship between the robustness and the coupling strength, and it is found that the robustness of network neither increases nor decreases monotonically with the increase coupling strength.
-
Keywords:
- interdependent network /
- coupling strength /
- robustness /
- cascading failure
[1] Zio E, Golea L R, Sansavini G 2012 Reliab Eng. Sys. Saf. 103 72
[2] Xiao Y D, Lao S Y, Hou L L, Bai L 2013 Acta Phys. Sin. 62 180201 (in Chinese) [肖延东, 老松杨, 侯绿林, 白亮 2013 物理学报 62 180201]
[3] Chen S M, Pang S P, Zou X Q 2013 Chin. Phys. B 22 058901
[4] Wang J W, Rong L L 2009 Acta Phys. Sin. 58 3714 (in Chinese) [王建伟, 荣莉莉 2009 物理学报 58 3714]
[5] West B J, Grigolini P 2011 Phys. Today 64 58
[6] Barabási A L, Bonabeau E 2003 Sci. Am. 288 50
[7] Borgatti S P Mehra A, Brass D, Labianca G 2009 Science 323 892
[8] Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025
[9] Li R Q, Tang M, Xu B M 2013 Acta Phys. Sin. 62 168903 (in Chinese) [李睿琪, 唐明, 许伯铭 2013 物理学报 62 168903]
[10] Wang S Hong L, Chen X 2012 Physica A 391 3323
[11] Wang S, Hong L, Ouyang M, Zhang J, Chen X 2013 Safety Sci. 51 328
[12] Buldyrev S V, Shere N W Cwilich G A 2011 Phys. Rev. E 83 016112
[13] Parshani R, Buldyrev S V, Havlin S 2010 Phys. Rev. Lett. 105 048701
[14] Qiu Y 2013 Physica A 392 1920
[15] Wang W, Chen G 2008Phys. Rev. E 77 026101
[16] Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102
[17] Pocock M, Evans D, Memmott J 2012 Science 335 973
[18] Mirzasoleiman B, Babaei M, Jalili M, Safari M 2011 Phys. Rev. E 84 046114
-
[1] Zio E, Golea L R, Sansavini G 2012 Reliab Eng. Sys. Saf. 103 72
[2] Xiao Y D, Lao S Y, Hou L L, Bai L 2013 Acta Phys. Sin. 62 180201 (in Chinese) [肖延东, 老松杨, 侯绿林, 白亮 2013 物理学报 62 180201]
[3] Chen S M, Pang S P, Zou X Q 2013 Chin. Phys. B 22 058901
[4] Wang J W, Rong L L 2009 Acta Phys. Sin. 58 3714 (in Chinese) [王建伟, 荣莉莉 2009 物理学报 58 3714]
[5] West B J, Grigolini P 2011 Phys. Today 64 58
[6] Barabási A L, Bonabeau E 2003 Sci. Am. 288 50
[7] Borgatti S P Mehra A, Brass D, Labianca G 2009 Science 323 892
[8] Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025
[9] Li R Q, Tang M, Xu B M 2013 Acta Phys. Sin. 62 168903 (in Chinese) [李睿琪, 唐明, 许伯铭 2013 物理学报 62 168903]
[10] Wang S Hong L, Chen X 2012 Physica A 391 3323
[11] Wang S, Hong L, Ouyang M, Zhang J, Chen X 2013 Safety Sci. 51 328
[12] Buldyrev S V, Shere N W Cwilich G A 2011 Phys. Rev. E 83 016112
[13] Parshani R, Buldyrev S V, Havlin S 2010 Phys. Rev. Lett. 105 048701
[14] Qiu Y 2013 Physica A 392 1920
[15] Wang W, Chen G 2008Phys. Rev. E 77 026101
[16] Motter A E, Lai Y C 2002 Phys. Rev. E 66 065102
[17] Pocock M, Evans D, Memmott J 2012 Science 335 973
[18] Mirzasoleiman B, Babaei M, Jalili M, Safari M 2011 Phys. Rev. E 84 046114
计量
- 文章访问数: 7584
- PDF下载量: 999
- 被引次数: 0