搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二元双层耦合网络渗流行为分析

高彦丽 徐维南 周杰 陈世明

引用本文:
Citation:

二元双层耦合网络渗流行为分析

高彦丽, 徐维南, 周杰, 陈世明

Analysis of seepage behaviour in binary two-layer coupled networks

Gao Yan-Li, Xu Wei-Nan, Zhou Jie, Chen Shi-Ming
PDF
HTML
导出引用
  • 本文建立了节点和连边耦合的二元相互依赖网络模型(binary interdependent networks with node and edge coupling, BINNEC). 该模型中, 网络A节点随机依赖网络B多条边从而形成边依赖群, 当边依赖群的失效比例超过网络失效容忍度$\mu $时, 导致网络A的节点失效. 基于自平衡概率法建立起理论分析框架, 通过对3种经典网络结构下的BINNEC网络进行计算机仿真验证, 并分析了该模型面对随机攻击下的相变行为和关键阈值. 研究结果表明3种网络结构下的BINNEC网络和一元耦合网络一样脆弱, 网络的相变行为都是一阶相变. 当网络节点的边依赖群规模$m$越大, 网络鲁棒性增强; 在网络的边依赖群规模一定时, 节点的失效容忍度$\mu $越大网络鲁棒性越强. 本文进一步研究在$m$$\mu $相同条件下, 网络的度分布对BINNEC的影响. 研究可以为此类二元耦合网络鲁棒性提供一定的理论依据, 同时也为现实网络的安全设计提供指导意义.
    Existing research on interdependent networks defines network functionality as being entirely on nodes or on edges, which means interdependence between nodes and nodes, or interdependence between edges and edges. However, the reality is not characterized solely by interdependence between functionalities of individual elements, which means that it is not entirely a single-element coupled network. In some cases, nodes and edges are interdependent. Considering this reality, a binary interdependent network model with node and edge coupling (BINNEC), where both nodes and edges are interdependent, is proposed in this work. In this model, nodes in network A randomly depend on multiple edges in network B, forming edge-dependent clusters. Additionally, a failure tolerance parameter, denoted as $\mu $, is set for these edge-dependent clusters. When the failure rate of an edge-dependent cluster exceeds $\mu $, the failure of the nodes in network A that depends on it, will happen. Based on the self-balancing probability method, a theoretical analysis framework is established. Through computer simulation verification of BINNEC under three classical network structures, the model's phase transition behavior and critical thresholds in the face of random attacks are analyzed. The results reveal that BINNEC under three network structures is as fragile as a single-element coupled network, exhibiting a first-order phase transition behavior. As the size of edge-dependent cluster $m$ increases, network robustness is enhanced. Moreover, with a constant size of edge-dependent cluster, a larger tolerance for node failure $\mu $ leads to stronger network robustness. Finally, this research reveals that under the same conditions of $m$ and $\mu $, when the tolerance for node failure $\mu $ is insufficient to withstand the failure of a single edge, the degree distribution widens, and network robustness weakens. However, when the tolerance for node failure is sufficient to withstand the failure of at least one edge, the network robustness actually strengthens as the degree distribution increases. These findings provide a theoretical basis for studying such binary coupled models and also for guiding the secure design of real-world networks.
      通信作者: 陈世明, shmchen@ecjtu.jx.cn
    • 基金项目: 国家自然科学基金(批准号: 62341306, 12075088, 62263011)和江西省自然科学基金(批准号: 20232BAB202033)资助的课题.
      Corresponding author: Chen Shi-Ming, shmchen@ecjtu.jx.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62341306, 12075088, 62263011) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20232BAB202033).
    [1]

    Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104Google Scholar

    [2]

    Mirzasoleiman B, Babaei M, Jalili M, Safari M 2011 Phys. Rev. E 84 046114Google Scholar

    [3]

    Wang J W, Rong L L, Zhang L, Zhang Z Z 2008 Physica A 387 6671Google Scholar

    [4]

    Panzieri S, Setola R 2008 Int. J. Model. Identif Control 3 69Google Scholar

    [5]

    Adenso-Díaz B, Mar-Ortiz J, Lozano S 2018 Int. J. Prod. Res. 56 5104Google Scholar

    [6]

    Yao H G, Xiao H H, Wei W 2022 Discret. Dyn. Nat. Soc. 23 49523Google Scholar

    [7]

    Rosato V, Issacharoff L, Tiriticco F, Meloni S, Porcellinins S D, Setola R 2008 Int. J. Crit. Infrastruct. 4 63Google Scholar

    [8]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025Google Scholar

    [9]

    Hu B, Li F, Zhou H S 2009 Chin. Phys. Lett. 26 128901Google Scholar

    [10]

    Mizutaka S, Yakubo K 2015 Phys. Rev. E 92 012814Google Scholar

    [11]

    Li J, Wu J, Li Y, Deng H Z, Tan Y J 2011 Chin. Phys. Lett. 28 058904Google Scholar

    [12]

    Parshani R, Buldyrev S V, Havlin S 2010 Phys. Rev. Lett. 105 048701Google Scholar

    [13]

    Dong G G, Gao J X, Tian L X, Du R J, He Y H 2012 Phys. Rev. E 85 016112Google Scholar

    [14]

    Gao J X, Buldyrev S V, Havlin S, Stanley E 2011 Phys. Rev. Lett. 107 195701Google Scholar

    [15]

    Jiang W, Liu R, Jia C 2020 Complexity 2020 3578736Google Scholar

    [16]

    Zhang H, Zhou J, Zou Y, Tan M, Xiao G X, Stanley H Z 2020 Phys. Rev. E 101 022314Google Scholar

    [17]

    Dong G, Chen Y, Wang F, Du R J, Tian L X, Stanley H E 2019 Chaos 29 073107Google Scholar

    [18]

    韩伟涛, 伊鹏 2019 物理学报 68 078902Google Scholar

    Han W T, Yi P 2019 Acta Phys. Sin. 68 078902Google Scholar

    [19]

    Wang Z X, Zhou D, Hu Y Q 2018 Phys. Rev. E 97 032306Google Scholar

    [20]

    Gao Y L, Chen S M, Zhou J, Stanley H E, Gao J 2021 Physica A 580 126136Google Scholar

    [21]

    Gao Y L, Yu H B, Zhou J, Zhou Y Z, Chen S M 2023 Chin. Phys. B 32 098902Google Scholar

    [22]

    Zhao Y Y, Zhou J, Zou Y, Guan S G, Gao Y L 2022 Chaos Solitons Fractals 156 111819Google Scholar

    [23]

    Xie Y F, Sun S W, Wang L, Xia C Y 2023 Phys. Lett. A 483 129063Google Scholar

  • 图 1  相依网络示意图

    Fig. 1.  Schematic diagram of the interdependence network.

    图 2  二元耦合网络模型及其级联失效示意图

    Fig. 2.  Schematic diagram of binary coupled network model and cascade failure.

    图 3  BINNEC中概率参数${L_{\text{A}}}$和${L_{\text{B}}}$的定义示意图

    Fig. 3.  Schematic definition of probability parameters ${L_{\text{A}}}$ and ${L_{\text{B}}}$ in BINNEC.

    图 4  RR BINNEC在极端$\mu $值和不同m 时, SASBp的关系图

    Fig. 4.  Plots of SA and SB versus p for the RR BINNEC at extreme $\mu $ values and at different m .

    图 5  RR BINNEC在不同m 和$\mu $时SASBp的关系对比图

    Fig. 5.  Comparison chart of SA and SB versus p for the RR BINNEC at different $\mu $ and m.

    图 6  ER BINNEC在极端$\mu $值和不同m时, SASBp的关系图

    Fig. 6.  Plots of SA and SB versus p for the ER BINNEC at extreme $\mu $ values and at different m.

    图 7  ER BINNEC在不同m和$\mu $时SASBp的关系对比图

    Fig. 7.  Comparison chart of SA and SB versus p for the ER BINNEC at different $\mu $ and m.

    图 8  SF BINNEC在极端$\mu $值和不同$m$时, SASBp的关系图

    Fig. 8.  Plots of SA and SB versus p for the SF BINNEC at extreme $\mu $ values and at different $m$.

    图 9  SF BINNEC不同m和其对应不同$\mu $时, SASBp的对比图

    Fig. 9.  Comparison chart of SA and SB versus p for the SF BINNEC at different $\mu $ and m.

    图 10  依赖群规模m取不同值时, ${p_{\text{c}}}$与$\mu $的关系图

    Fig. 10.  Plot of ${p_{\text{c}}}$ versus $\mu $ for different dependency group sizes m.

    图 11  不同失效边${n_i}$下SBp的关系

    Fig. 11.  Plot of SB versus p at different failure edges ${n_i}$.

  • [1]

    Crucitti P, Latora V, Marchiori M 2004 Phys. Rev. E 69 045104Google Scholar

    [2]

    Mirzasoleiman B, Babaei M, Jalili M, Safari M 2011 Phys. Rev. E 84 046114Google Scholar

    [3]

    Wang J W, Rong L L, Zhang L, Zhang Z Z 2008 Physica A 387 6671Google Scholar

    [4]

    Panzieri S, Setola R 2008 Int. J. Model. Identif Control 3 69Google Scholar

    [5]

    Adenso-Díaz B, Mar-Ortiz J, Lozano S 2018 Int. J. Prod. Res. 56 5104Google Scholar

    [6]

    Yao H G, Xiao H H, Wei W 2022 Discret. Dyn. Nat. Soc. 23 49523Google Scholar

    [7]

    Rosato V, Issacharoff L, Tiriticco F, Meloni S, Porcellinins S D, Setola R 2008 Int. J. Crit. Infrastruct. 4 63Google Scholar

    [8]

    Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S 2010 Nature 464 1025Google Scholar

    [9]

    Hu B, Li F, Zhou H S 2009 Chin. Phys. Lett. 26 128901Google Scholar

    [10]

    Mizutaka S, Yakubo K 2015 Phys. Rev. E 92 012814Google Scholar

    [11]

    Li J, Wu J, Li Y, Deng H Z, Tan Y J 2011 Chin. Phys. Lett. 28 058904Google Scholar

    [12]

    Parshani R, Buldyrev S V, Havlin S 2010 Phys. Rev. Lett. 105 048701Google Scholar

    [13]

    Dong G G, Gao J X, Tian L X, Du R J, He Y H 2012 Phys. Rev. E 85 016112Google Scholar

    [14]

    Gao J X, Buldyrev S V, Havlin S, Stanley E 2011 Phys. Rev. Lett. 107 195701Google Scholar

    [15]

    Jiang W, Liu R, Jia C 2020 Complexity 2020 3578736Google Scholar

    [16]

    Zhang H, Zhou J, Zou Y, Tan M, Xiao G X, Stanley H Z 2020 Phys. Rev. E 101 022314Google Scholar

    [17]

    Dong G, Chen Y, Wang F, Du R J, Tian L X, Stanley H E 2019 Chaos 29 073107Google Scholar

    [18]

    韩伟涛, 伊鹏 2019 物理学报 68 078902Google Scholar

    Han W T, Yi P 2019 Acta Phys. Sin. 68 078902Google Scholar

    [19]

    Wang Z X, Zhou D, Hu Y Q 2018 Phys. Rev. E 97 032306Google Scholar

    [20]

    Gao Y L, Chen S M, Zhou J, Stanley H E, Gao J 2021 Physica A 580 126136Google Scholar

    [21]

    Gao Y L, Yu H B, Zhou J, Zhou Y Z, Chen S M 2023 Chin. Phys. B 32 098902Google Scholar

    [22]

    Zhao Y Y, Zhou J, Zou Y, Guan S G, Gao Y L 2022 Chaos Solitons Fractals 156 111819Google Scholar

    [23]

    Xie Y F, Sun S W, Wang L, Xia C Y 2023 Phys. Lett. A 483 129063Google Scholar

  • [1] 王建伟, 赵乃萱, 望楚佩, 向玲慧, 温廷新. 相互依赖网络上级联故障鲁棒性悖论研究. 物理学报, 2024, 73(21): 218901. doi: 10.7498/aps.73.20241002
    [2] 杨武华, 王彩琳, 张如亮, 张超, 苏乐. 高压IGBT雪崩鲁棒性的研究. 物理学报, 2023, 72(7): 078501. doi: 10.7498/aps.72.20222248
    [3] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性. 物理学报, 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [4] 严玉为, 蒋沅, 杨松青, 余荣斌, 洪成. 基于时间序列的网络失效模型. 物理学报, 2022, 71(8): 088901. doi: 10.7498/aps.71.20212106
    [5] 潘倩倩, 刘润然, 贾春晓. 具有弱依赖组的复杂网络上的级联失效. 物理学报, 2022, (): . doi: 10.7498/aps.71.20210850
    [6] 潘倩倩, 刘润然, 贾春晓. 具有弱依赖组的复杂网络上的级联失效. 物理学报, 2022, 71(11): 110505. doi: 10.7498/aps.70.20210850
    [7] 薛晓丹, 王美丽, 邵雨竹, 王俊松. 基于抑制性突触可塑性的神经元放电率自稳态机制. 物理学报, 2019, 68(7): 078701. doi: 10.7498/aps.68.20182234
    [8] 韩伟涛, 伊鹏. 相依网络的条件依赖群逾渗. 物理学报, 2019, 68(7): 078902. doi: 10.7498/aps.68.20182258
    [9] 韩伟涛, 伊鹏, 马海龙, 张鹏, 田乐. 异质弱相依网络鲁棒性研究. 物理学报, 2019, 68(18): 186401. doi: 10.7498/aps.68.20190761
    [10] 吴佳键, 龚凯, 王聪, 王磊. 相依网络上基于相连边的择优恢复算法. 物理学报, 2018, 67(8): 088901. doi: 10.7498/aps.67.20172526
    [11] 阮逸润, 老松杨, 王竣德, 白亮, 陈立栋. 基于领域相似度的复杂网络节点重要度评估算法. 物理学报, 2017, 66(3): 038902. doi: 10.7498/aps.66.038902
    [12] 高彦丽, 陈世明. 一种全局同质化相依网络耦合模式. 物理学报, 2016, 65(14): 148901. doi: 10.7498/aps.65.148901
    [13] 侯绿林, 老松杨, 肖延东, 白亮. 复杂网络可控性研究现状综述. 物理学报, 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [14] 彭兴钊, 姚宏, 杜军, 王哲, 丁超. 负荷作用下相依网络中的级联故障. 物理学报, 2015, 64(4): 048901. doi: 10.7498/aps.64.048901
    [15] 陈世明, 吕辉, 徐青刚, 许云飞, 赖强. 基于度的正/负相关相依网络模型及其鲁棒性研究. 物理学报, 2015, 64(4): 048902. doi: 10.7498/aps.64.048902
    [16] 段东立, 武小悦. 基于可调负载重分配的无标度网络连锁效应分析. 物理学报, 2014, 63(3): 030501. doi: 10.7498/aps.63.030501
    [17] 陈世明, 邹小群, 吕辉, 徐青刚. 面向级联失效的相依网络鲁棒性研究. 物理学报, 2014, 63(2): 028902. doi: 10.7498/aps.63.028902
    [18] 任卓明, 邵凤, 刘建国, 郭强, 汪秉宏. 基于度与集聚系数的网络节点重要性度量方法研究. 物理学报, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [19] 缪志强, 王耀南. 基于径向小波神经网络的混沌系统鲁棒自适应反演控制. 物理学报, 2012, 61(3): 030503. doi: 10.7498/aps.61.030503
    [20] 曾高荣, 裘正定. 数字水印的鲁棒性评测模型. 物理学报, 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
计量
  • 文章访问数:  1059
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-01
  • 修回日期:  2024-06-14
  • 上网日期:  2024-07-16
  • 刊出日期:  2024-08-20

/

返回文章
返回